Skip to main content

Investigating the Use of Manifold Embedding for Attractor Reconstruction from Time Series

  • Chapter
  • First Online:
International Conference on Theory and Application in Nonlinear Dynamics (ICAND 2012)

Part of the book series: Understanding Complex Systems ((UCS))

  • 888 Accesses

Abstract

Spatio-temporal analysis of a time series from a complex dynamical system often requires reconstruction of the state-space attractor from observations of a single state variable. The standard approach takes advantage of the Takens delay embedding theorem to obtain the reconstruction. We investigate here a modification which makes use of nonlinear spectral graph techniques for learning the underlying manifold from high-dimensional data. Specifically, we examine how well diffusion maps and locally-linear embedding recover system dynamics and their sensitivity to parameters. Analysis is conducted using individual observations of the chaotic Lorenz and Hénon attractors. We show that manifold embeddings, given selected parameter choices, can improve forecasting capability for chaotic time series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Becks, F. Hilker, H. Malchow, K. Jurgens, H. Arndt, Experimental demonstration of chaos in a microbial food web. Nature Lett. 435(30), 1226–1229 (2005)

    Article  Google Scholar 

  2. E. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  Google Scholar 

  3. F. Moon, Fractal boundary for chaos in a two-state mechanical oscillator. Phys. Rev. Lett. 53(10), 962–964 (1984)

    Article  MathSciNet  Google Scholar 

  4. F. Takens, Detecting strange attractors in turbulence, in Dynamical Systems and Turbulence: Springer Lecture Notes in Mathematics, ed. by D. Rand, L. Young (Springer, Berlin, 1981), pp. 366–381

    Google Scholar 

  5. A. Fraser, H. Swinney, Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134–1140 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Kennel, R. Brown, H. Abarbanel, Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45(6), 3403–3411 (1992)

    Article  Google Scholar 

  7. T. Sauer, J. Yorke, How many delay coordinates do you need? Int. J. Bifurcation Chaos 3(3), 737–744 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Broomhead, G. King, Extracting qualitative dynamics from experimental data. Physica D 20(23), 217236 (1986)

    MathSciNet  Google Scholar 

  9. R. Vautard, M. Ghil, Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D 35, 395–424 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. N. Golyandina, V. Nekrutkin, A. Zhigljavsky, Analysis of Time Series Structure: SSA and Related Techniques (CRC, Boka Raton, 2001)

    Book  Google Scholar 

  11. J. Lee, M. Verleysen, Nonlinear Dimensionality Reduction (Springer, New York, 2007)

    Google Scholar 

  12. M. Belkin, P. Niyogi, Semi-supervised learning on riemannian manifolds. Mach. Learn. 56, 209–239 (2004)

    Article  MATH  Google Scholar 

  13. D. Giannakis, A. Majda, Nonlinear laplacian spectral analysis for time series with intermittency and low-frequency variability. Proc. Nat. Acad. Sci. 109(7), 2222–2227 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Suetani, S. Akaho, A ransac-based isomap for filiform manifolds in nonlinear dynamical systems -an application to chaos in a dripping faucet, in ICANN, pp. 277–284 (2011)

    Google Scholar 

  15. R. Coifman, S. Lafon, Nonlinear dimensionality reduction using locally linear embedding. Appl. Comput. Harmon. Anal. 21(22), 530 (2006)

    Google Scholar 

  16. S. Roweis, L. Saul, Nonlinear dimensionality reduction using locally linear embedding. Science 290(22)

    Google Scholar 

  17. M. Hénon, A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50(1), 69–77 (1976)

    Article  MATH  Google Scholar 

  18. J. Eckmann, D. Ruelle, Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  19. P. Grassberger, I. Procaccia, Measuring the strangeness of strange attractors. Physica D 9(1–2), 189–208 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  20. J. Kaplan, J. Yorke, Chaotic behavior of multidimensional difference equations, in Lecture Notes in Mathematics, vol. 730, ed. by H. Peitgen, W. Walther (Springer, Berlin, 1979), pp. 204–227

    Google Scholar 

  21. M. Sano, Y. Sawada, Measurement of the lyapunov spectrum from a chaotic time series. Phys. Rev. Lett. 55(10), 1082–1085 (1985)

    Article  MathSciNet  Google Scholar 

  22. L. Pecora, T. Carroll, Discontinuous and nondifferentiable functions and dimension increase induced by filtering chaotic data. Chaos 6(3), 432–439 (1196)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas A. Overbey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Overbey, L.A., Olson, C.C. (2014). Investigating the Use of Manifold Embedding for Attractor Reconstruction from Time Series. In: In, V., Palacios, A., Longhini, P. (eds) International Conference on Theory and Application in Nonlinear Dynamics (ICAND 2012). Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-02925-2_24

Download citation

Publish with us

Policies and ethics