Skip to main content

Fabrication Technique of Deformation Carriers (Gratings and Speckle Patterns) with FIB for Microscale/Nanoscale Deformation Measurement

  • Chapter
  • First Online:
FIB Nanostructures

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 20))

Abstract

The fabrication technique of deformation carriers with focused ion beam (FIB) milling for microscale/nanoscale deformation measurement has been studied in this chapter. The deformation carriers refer to microscale/nanoscale gratings and speckle patterns, which are indispensable elements for moiré and digital image correlation (DIC) method under scanning electron microscope (SEM) respectively. The fabrication principle, the design, and the influencing factors of these two kinds of deformation carriers are studied respectively. Their successful applications to microscale/nanoscale deformation measurement are also presented, which demonstrate that the deformation carriers combined with photo-mechanics techniques under SEM are effective tools for microscale/nanoscale deformation measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sabate, N., Vogel, D., Gollhardt, A., Keller, J., Cane, C., Gracia, I., Morante, J., Michel, B.: Residual stress measurement on a MEMS structure with high-spatial resolution. J. Microelectromech. Syst. 16, 365–372 (2007)

    Article  Google Scholar 

  2. Zhou, W., Yang, J.L., Sun, G.S., Liu, X.F., Yang, F.H., Li, J.M.: Fracture properties of silicon carbide thin films by bulge test of long rectangular membrane. J. Microelectromech. Syst. 17, 453–461 (2008)

    Article  Google Scholar 

  3. Tong, C.J., Lin, M.T.: Design and development of a novel paddle test structure for the mechanical behavior measurement of thin films application for MEMS. Microsyst. Technol. 15, 1207–1216 (2009)

    Article  Google Scholar 

  4. Jonnalagadda, K.N., Chasiotis, I., Yagnamurthy, S., Lambros, J., Pulskamp, J., Polcawich, R., Dubey, M.: Experimental investigation of strain rate dependence of nanocrystalline Pt films. Exp. Mech. 50, 25–35 (2010)

    Article  Google Scholar 

  5. Kang, D.J., Park, J.H., Shin, M.S., Ha, J.E., Lee, H.J.: Specimen alignment in an axial tensile test of thin films using direct imaging and its influence on the mechanical properties of BeCu. J. Micromech. Microeng. 20, 085001 (2010)

    Article  Google Scholar 

  6. Post, D., McKelvie, J., Tu, M., Dai, F.: Fabrication of holographic gratings using a moving point source. Appl. Opt. 28, 3494–3497 (1989)

    Article  Google Scholar 

  7. Moulart, R., Rotinat, R., Pierron, F., Lerondel, G.: On the realization of microscopic grids for local strain measurement by direct interferometric photolithography. Opt. Lasers Eng. 45, 1131–1147 (2007)

    Article  Google Scholar 

  8. Kishimoto, S., Egashira, M., Shinya, N.: Microcreep deformation measurements by a moire method using electron beam lithography and electron beam scan. Opt. Eng. 32, 522–526 (1993)

    Article  Google Scholar 

  9. Xie, H., Kishimoto, S., Shinya, N.: Fabrication of high-frequency electron beam moire grating using multi-deposited layer techniques. Opt. Laser Technol. 32, 361–367 (2000)

    Article  Google Scholar 

  10. Xie, H., Kishimoto, S., Li, Y., Liu, Q., Zhao, Y.: Fabrication of micro-moire gratings on a strain sensor structure for deformation analysis with micro-moire technique. Microelectron. Reliab. 49, 727–733 (2009)

    Article  Google Scholar 

  11. Xie, H., Li, B., Geer, R., Xu, B., Castracane, J.: Focused ion beam Moire method. Opt. Lasers Eng. 40, 163–177 (2003)

    Article  Google Scholar 

  12. Yan, D., Cheng, J., Apsel, A.: Fabrication of SOI-based nano-gratings for Moire measurement using focused ion beam. Sensor. Actuator. Phys. 115, 60–66 (2004)

    Article  Google Scholar 

  13. Shang, H., Xie, H., Wang, X., Jiang, S., Dai, F., Wang, W., Fang, Y., Zhao, Y.: Thermal properties measurement of micro-electromechanical system sensors by digital Moiré method. Strain 41, 157–162 (2005)

    Article  Google Scholar 

  14. Hua, D., Hui-Min, X., Zhi-Qiang, G., Qiang, L., Chang-Zhi, G., Hai-Chang, Q., Li-Jian, R.: Development of the technique for fabricating submicron Moire gratings on metal materials using focused ion beam milling. Chin. Phys. Lett. 24, 2521–2524 (2007)

    Article  Google Scholar 

  15. Scrivens, W., Luo, Y., Sutton, M., Collette, S., Myrick, M., Miney, P., Colavita, P., Reynolds, A., Li, X.: Development of patterns for digital image correlation measurements at reduced length scales. Exp. Mech. 47, 63–77 (2007)

    Article  Google Scholar 

  16. Berfield, T., Patel, J., Shimmin, R., Braun, P., Lambros, J., Sottos, N.: Micro-and nanoscale deformation measurement of surface and internal planes via digital image correlation. Exp. Mech. 47, 51–62 (2007)

    Article  Google Scholar 

  17. Tanaka, Y., Naito, K., Kishimoto, S., Kagawa, Y.: Development of a pattern to measure multiscale deformation and strain distribution via in situ FE-SEM observations. Nanotechnology 22, 115704 (2011)

    Article  Google Scholar 

  18. Liu, Z., Xie, H., Fang, D., Gu, C., Meng, Y., Wang, W., Fang, Y., Miao, J.: Deformation analysis in microstructures and micro-devices. Microelectron. Reliab. 47, 2226–2230 (2007)

    Article  Google Scholar 

  19. Korsunsky, A., Sebastiani, M., Bemporad, E.: Focused ion beam ring drilling for residual stress evaluation. Mater. Lett. 63, 1961–1963 (2009)

    Article  Google Scholar 

  20. Korsunsky, A., Sebastiani, M., Bemporad, E.: Residual stress evaluation at the micrometer scale: analysis of thin coatings by FIB milling and digital image correlation. Surf. Coat. Technol. 205, 2393–2403 (2010)

    Article  Google Scholar 

  21. Sebastiani, M., Eberl, C., Bemporad, E., Pharr, G.M.: Depth-resolved residual stress analysis of thin coatings by a new FIB-DIC method. Mater. Sci. Eng. A 528, 7901–7908 (2011)

    Article  Google Scholar 

  22. Sabate, N., Vogel, D., Gollhardt, A., Marcos, J., Gracia, I., Cane, C., Michel, B.: Digital image correlation of nanoscale deformation fields for local stress measurement in thin films. Nanotechnology 17, 5264–5270 (2006)

    Article  Google Scholar 

  23. Sabate, N., Vogel, D., Gollhardt, A., Keller, J., Michel, B., Cane, C., Gracia, I., Morante, J.: Measurement of residual stresses in micromachined structures in a microregion. Appl. Phys. Lett. 88, 071910 (2006)

    Article  Google Scholar 

  24. Sabate, N., Vogel, D., Gollhardt, A., Keller, J., Cane, C., Gracia, I., Morante, J., Michel, B.: Measurement of residual stress by slot milling with focused ion-beam equipment. J. Micromech. Microeng. 16, 254–259 (2006)

    Article  Google Scholar 

  25. Kregting, R., Gielen, S., Driel, W., Alkemade, P., Miro, H., Kamminga, J.D.: Local stress analysis on semiconductor devices by combined experimental-numerical procedure. Microelectron. Reliab. 51, 1092–1096 (2011)

    Article  Google Scholar 

  26. Kammers, A.D., Daly, S.: Small-scale patterning methods for digital image correlation under scanning electron microscopy. Meas. Sci. Technol. 22, 125501 (2011)

    Article  Google Scholar 

  27. Tseng, A.: Recent developments in micromilling using focused ion beam technology. J. Micromech. Microeng. 14, R15–R34 (2004)

    Article  Google Scholar 

  28. Reyntjens, S., Puers, R.: A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng. 11, 287–300 (2001)

    Article  Google Scholar 

  29. Li, Y., Xie, H., Tang, M., Zhu, J., Luo, Q., Gu, C.: The study on microscopic mechanical property of polycrystalline with SEM moiré method. Opt. Lasers Eng. 50, 1757–1764 (2012)

    Article  Google Scholar 

  30. Li, Y., Xie, H., Guo, B., Luo, Q., Gu, C., Xu, M.: Fabrication of high-frequency moiré gratings for microscopic deformation measurement using focused ion beam milling. J. Micromech. Microeng. 20, 055037 (2010)

    Article  Google Scholar 

  31. Li, Y.J.: Theoretical and experimental study of SEM moiré method and its applications. Ph.D. thesis, Department of engineering mechanics, Beijing Tsinghua University (2011)

    Google Scholar 

  32. Li, Y.J.: The measurement technique of digital image correlation and its applications. Master thesis, Department of engineering mechanics, Beijing Tsinghua University (2008)

    Google Scholar 

  33. Li, Y.J., Xie, H.M., Luo, Q., Gu, C.Z., Hu, Z.X., Chen, P.W., Zhang, Q.M.: Fabrication technique of micro/nano-scale speckle patterns with focused ion beam. Sci. China Phys. Mech. Astron. 55, 1037–1044 (2012)

    Article  Google Scholar 

  34. Zhou, P., Goodson, K.E.: Subpixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC). Opt. Eng. 40, 1613–1620 (2001)

    Article  Google Scholar 

  35. Pan, B., Lu, Z.X., Xie, H.M.: Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation. Opt. Lasers Eng. 48, 469–477 (2010)

    Article  Google Scholar 

  36. Hua, T., Xie, H.M., Wang, S., Hu, Z.X., Chen, P.W., Zhang, Q.M.: Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation. Opt. Laser Technol. 43, 9–13 (2011)

    Article  Google Scholar 

  37. Lecompte, D., Smits, A., Bossuyt, S., Sol, H., Vantomme, J., Van Hemelrijck, D., Habraken, A.: Quality assessment of speckle patterns for digital image correlation. Opt. Lasers Eng. 44, 1132–1145 (2006)

    Article  Google Scholar 

  38. Yaofeng, S., Pang, J.H.L.: Study of optimal subset size in digital image correlation of speckle pattern images. Opt. Lasers Eng. 45, 967–974 (2007)

    Article  Google Scholar 

  39. Pan, B., Xie, H., Wang, Z., Qian, K.: Study on subset size selection in digital image correlation for speckle patterns. Opt. Express 16, 7037–7048 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial supported by the National Basic Research Program of China (“973” Project) (Grant Nos. 2010CB631005, 2011CB606105), the National Natural Science Foundation of China (Grant Nos. 11232008, 91216301, 11227801, 11172151), Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.20090002110048), Tsinghua University Initiative Scientific Research Program, the Initiative Scientific Research Program, and the Doctoral Program of University of Jinan (Grant No. XBS 1307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin M. Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, Y., Xie, H.M., Wang, Q.H., Liu, Z.W. (2013). Fabrication Technique of Deformation Carriers (Gratings and Speckle Patterns) with FIB for Microscale/Nanoscale Deformation Measurement. In: Wang, Z. (eds) FIB Nanostructures. Lecture Notes in Nanoscale Science and Technology, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-02874-3_10

Download citation

Publish with us

Policies and ethics