Skip to main content

Dynamic Feature Selection for Online Action Recognition

  • Conference paper
Human Behavior Understanding (HBU 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8212))

Included in the following conference series:

Abstract

The ability to recognize human actions in real-time is fundamental in a wide range of applications from home entertainment to medical systems. Previous work on online action recognition has shown a tradeoff between accuracy and latency. In this paper we present a novel algorithm for online action recognition that combines the discriminative power of Random Forests for feature selection and a new dynamic variation of AdaBoost for online classification.

The proposed method has been evaluated using datasets and performance metrics specifically designed for real time action recognition. Our results show that the presented algorithm is able to improve recognition rates at low latency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ellis, C., Masood, S.Z., Tappen, M.F., Laviola Jr., J.J., Sukthankar, R.: Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition. International Journal of Computer Vision 101, 420–436 (2013)

    Article  Google Scholar 

  2. Nowozin, S., Shotton, J.: Action Points: A Representation for Low-latency Online Human Action Recognition. Technical report (2012)

    Google Scholar 

  3. Fothergill, S., Mentis, H., Kohli, P., Nowozin, S.: Instructing people for training gestural interactive systems. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1737–1746. ACM, New York (2012)

    Google Scholar 

  4. Bloom, V., Makris, D., Argyriou, V.: G3D: A gaming action dataset and real time action recognition evaluation framework. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 7–12. IEEE (2012)

    Google Scholar 

  5. Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. Pattern Analysis and Machine Intelligence 23, 257–267 (2001)

    Article  Google Scholar 

  6. Aggarwal, J.K., Ryoo, M.S.: Human activity analysis: A review. ACM Computing Surveys 43, 16:1–16:43 (2011)

    Google Scholar 

  7. Yamato, J., Ohya, J., Ishii, K.: Recognizing human action in time-sequential images using hidden Markov model. In: Computer Vision and Pattern Recognition, pp. 379–385 (1992)

    Google Scholar 

  8. Yu, E., Aggarwal, J.K.: Human action recognition with extremities as semantic posture representation. In: Computer Vision and Pattern Recognition Workshops, pp. 1–8 (2009)

    Google Scholar 

  9. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 3, pp. 32–36 (2004)

    Google Scholar 

  10. Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 65–72 (2005)

    Google Scholar 

  11. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The Journal of Machine Learning Research 3, 1157–1182 (2003)

    MATH  Google Scholar 

  12. Amaldi, E., Kann, V.: On the Approximability of Minimizing Nonzero Variables or Unsatisfied Relations in Linear Systems. Theoretical Computer Science 209, 237–260 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kohavi, R., John, G.H.: Wrappers for Feature Subset Selection. Artificial intelligence 97, 273–324 (1997)

    Article  MATH  Google Scholar 

  14. Climent-Pérez, P., Chaaraoui, A.A., Padilla-López, J.R., Flórez-Revuelta, F.: Optimal joint selection for skeletal data from RGB-D devices using a genetic algorithm. In: Batyrshin, I., Mendoza, M.G. (eds.) MICAI 2012, Part II. LNCS, vol. 7630, pp. 163–174. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Olshen, L., Breiman, J., Friedman, R., Stone, C.J.: Classification and Regression Trees. Wadsworth International Group (1984)

    Google Scholar 

  16. Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  17. Kinect Gesture Detection using Machine Learning, http://www.microsoft.com/en-us/download/details.aspx?id=28066

  18. Miao, X., Heaton, J.S.: A comparison of random forest and Adaboost tree in ecosystem classification in east Mojave Desert. In: 2010 18th Int. Conf. on Geoinformatics, pp. 1–6 (2010)

    Google Scholar 

  19. Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: International Conference on Machine Learning, pp. 148–156 (1996)

    Google Scholar 

  20. Rifkin, R., Klautau, A.: In Defense of One-Vs-All Classification. The Journal of Machine Learning Research 5, 101–141 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Friedman, J., Hastie, T., Tibshirani, R.: Additive Logistic Regression: a Statistical View of Boosting. Annals of Statistics 28, 2000 (1998)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Bloom, V., Argyriou, V., Makris, D. (2013). Dynamic Feature Selection for Online Action Recognition. In: Salah, A.A., Hung, H., Aran, O., Gunes, H. (eds) Human Behavior Understanding. HBU 2013. Lecture Notes in Computer Science, vol 8212. Springer, Cham. https://doi.org/10.1007/978-3-319-02714-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02714-2_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02713-5

  • Online ISBN: 978-3-319-02714-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics