Skip to main content

Human Fetal Growth Disorders and Imprinting Anomalies

  • Chapter
  • First Online:
Hormones, Intrauterine Health and Programming

Part of the book series: Research and Perspectives in Endocrine Interactions ((RPEI,volume 12))

  • 703 Accesses

Abstract

Epigenetic mechanisms play a key role in regulating gene expression. One of the best-studied epigenetic modifications is DNA methylation at cytosine residues of CpG dinucleotides in gene promoters, transposons and imprinting control regions (ICR). Genomic imprinting refers to the epigenetic marking of genes that results in monoallelic expression, depending on their parental origin. Several hormone genes involved in embryonic and fetal growth are imprinted. There are two critical time periods in epigenetic reprogramming: gametogenesis and early preimplantation development. Major reprogramming takes place in primordial germ cells in which parental imprints are erased and totipotency is restored. Imprint marks are then re-established during spermatogenesis or oogenesis, depending on sex. Upon fertilization, there is genome-wide demethylation followed by a wave of de novo methylation, both of which are resisted by imprinted loci. Disruption of imprinting causes disorders involving growth defects, such as the Beckwith-Wiedemann overgrowth syndrome (BWS) and Silver-Russell syndrome (SRS) with the opposite phenotype, involving intrauterine and postnatal growth retardation. These growth disorders are caused, in most cases, by abnormal DNA methylation at the 11p15 imprinted region that contains many imprinted genes, including Insulin-like Growth Factor 2 (IGF2). Loss of methylation (LOM) on the maternal allele at the centromeric ICR2/KCNQ1OT1 region or gain of methylation (GOM) on the maternal allele at the telomeric ICR1/IGF2/H19 region has been shown in BWS. This latter defect is associated with a higher risk of pediatric tumors, such as nephroblastoma. By contrast, LOM on the paternal allele at the telomeric ICR1 is observed in SRS. There is an abnormally high prevalence of conceptions by assisted reproductive technology (ART) among patients with BWS and SRS, suggesting that ART may favor imprinting alterations at the imprinted centromeric 11p15 locus (LOM at the maternally methylated ICR2 or LOM at the paternally methylated ICR1, respectively). The underlying cause of these imprinting defects (following ART or occurring spontaneously) remains unclear. However, recent data indicate that, in patients with BWS or SRS, including those born following ART for BWS, the methylation defect involves imprinted loci other than 11p15. Moreover, some patients exhibit LOM at both maternally and paternally methylated ICR, which suggests that unfaithful maintenance of DNA methylation marks following fertilization involves the dysregulation of a trans-acting regulatory factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abu-Amero S, Wakeling EL, Preece M, Whittaker J, Stanier P, Moore GE (2010) Epigenetic signatures of Silver-Russell syndrome. J Med Genet 47:150–154

    CAS  PubMed  Google Scholar 

  • Algar E, Dagar V, Sebaj M, Pachter N (2011) An 11p15 imprinting centre region 2 deletion in a family with Beckwith Wiedemann syndrome provides insights into imprinting control at CDKN1C. PLoS One 6:e29034. doi:10.1371/journal.pone.0029034

    CAS  PubMed Central  PubMed  Google Scholar 

  • Algar EM, St Heaps L, Darmanian A, Dagar V, Prawitt D, Peters GB, Collins F (2007) Paternally inherited submicroscopic duplication at 11p15.5 implicates insulin-like growth factor II in overgrowth and Wilms’ tumorigenesis. Cancer Res 67:2360–2365

    CAS  PubMed  Google Scholar 

  • Andrews SC, Wood MD, Tunster SJ, Barton SC, Surani MA, John RM (2007) Cdkn1c (p57Kip2) is the major regulator of embryonic growth within its imprinted domain on mouse distal chromosome 7. BMC Dev Biol 7:53

    PubMed Central  PubMed  Google Scholar 

  • Angiolini E, Fowden A, Coan P, Sandovici I, Smith P, Dean W, Burton G, Tycko B, Reik W, Sibley C, Constância M (2006) Regulation of placental efficiency for nutrient transport by imprinted genes. Placenta 27(Suppl A):S98–S102

    PubMed  Google Scholar 

  • Arboleda VA, Lee H, Parnaik R, Fleming A, Banerjee A, Ferraz-de-Souza B, Délot EC, Rodriguez-Fernandez IA, Braslavsky D, Bergadá I, Dell’Angelica EC, Nelson SF, Martinez-Agosto JA, Achermann JC, Vilain E (2012) Mutations in the PCNA-binding domain of CDKN1C cause IMAGe syndrome. Nat Genet 44:788–792

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arnaud P, Monk D, Hitchins M, Gordon E, Dean W, Beechey CV, Peters J, Craigen W, Preece M, Stanier P, Moore GE, Kelsey G (2003) Conserved methylation imprints in the human and mouse GRB10 genes with divergent allelic expression suggests differential reading of the same mark. Hum Mol Genet 12:1005–1019

    CAS  PubMed  Google Scholar 

  • Azzi S, Rossignol S, Steunou V, Sas T, Thibaud N, Danton F, Le Jule M, Heinrichs C, Cabrol S, Gicquel C, Le Bouc Y (2009) Multilocus methylation analysis in a large cohort of 11p15-related foetal growth disorders (Russell Silver and Beckwith Wiedemann syndromes) reveals simultaneous loss of methylation at paternal and maternal imprinted loci. Hum Mol Genet 18:4724–4733

    CAS  PubMed  Google Scholar 

  • Azzi S, Rossignol S, Le Bouc Y, Netchine I (2010) Lessons from imprinted multilocus loss of methylation in human syndromes: a step toward understanding the mechanisms underlying these complex diseases. Epigenetics 5:373–377

    CAS  PubMed  Google Scholar 

  • Azzi S, Brioude F, Le Bouc Y, Netchine I (2013) Human imprinting anomalies in fetal and childhood growth disorders: clinical implications and molecular mechanisms. Curr Pharm Des, 2013 Jul 19. [Epub ahead of print] PMID: 23888961

    Google Scholar 

  • Bartholdi D, Krajewska-Walasek M, Ounap K, Gaspar H, Chrzanowska KH, Ilyana H, Kayserili H, Lurie IW, Schinzel A, Baumer A (2009) Epigenetic mutations of the imprinted IGF2-H19 domain in Silver-Russell syndrome (SRS): results from a large cohort of patients with SRS and SRS-like phenotypes. J Med Genet 46:192–197

    CAS  PubMed  Google Scholar 

  • Barton SC, Surani MA, Norris ML (1984) Role of paternal and maternal genomes in mouse development. Nature 311:374–376

    CAS  PubMed  Google Scholar 

  • Bell AC, Felsenfeld G (2000) Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405:482–485

    CAS  PubMed  Google Scholar 

  • Berland S, Appelback M, Bruland O, Beygo J, Buiting K, Mackay DJ, Karen Temple I, Houge G (2013) Evidence for anticipation in Beckwith-Wiedemann syndrome. Eur J Hum Genet 21(12):1344–1348. doi:10.1038/ejhg.2013.71

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bestor TH (2003) Imprinting errors and developmental asymmetry. Philos Trans R Soc Lond B Biol Sci 358(1436):1411–1415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beygo J, Citro V, Sparago A, De Crescenzo A, Cerrato F, Heitmann M, Rademacher K, Guala A, Enklaar T, Anichini C, Cirillo Silengo M, Graf N, Prawitt D, Cubellis MV, Horsthemke B, Buiting K, Riccio A (2013) The molecular function and clinical phenotype of partial deletions of the IGF2/H19 imprinting control region depends on the spatial arrangement of the remaining CTCF-binding sites. Hum Mol Genet 22:544–557

    CAS  PubMed Central  PubMed  Google Scholar 

  • Binder G, Begemann M, Eggermann T, Kannenberg K (2011) Silver-Russell syndrome. Best Pract Res Clin Endocrinol Metab 25:153–160

    CAS  PubMed  Google Scholar 

  • Bliek J, Gicquel C, Maas S, Gaston V, Le Bouc Y, Mannens M (2004) Epigenotyping as a tool for the prediction of tumor risk and tumor type in patients with Beckwith-Wiedemann syndrome (BWS). J Pediatr 145:796–799

    PubMed  Google Scholar 

  • Bliek J, Terhal P, van den Bogaard MJ, Maas S, Hamel B, Salieb-Beugelaar G, Simon M, Letteboer T, van der Smagt J, Kroes H, Mannens M (2006) Hypomethylation of the H19 gene causes not only Silver-Russell syndrome (SRS) but also isolated asymmetry or an SRS-like phenotype. Am J Hum Genet 78:604–614

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bliek J, Snijder S, Maas SM, Polstra A, van der Lip K, Alders M, Knegt AC, Mannens MM (2009a) Phenotypic discordance upon paternal or maternal transmission of duplications of the 11p15 imprinted regions. Eur J Med Genet 52:404–408

    CAS  PubMed  Google Scholar 

  • Bliek J, Verde G, Callaway J, Maas SM, De Crescenzo A, Sparago A, Cerrato F, Russo S, Ferraiuolo S, Rinaldi MM, Fischetto R, Lalatta F, Giordano L, Ferrari P, Cubellis MV, Larizza L, Temple IK, Mannens MM, Mackay DJ, Riccio A (2009b) Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith-Wiedemann syndrome. Eur J Hum Genet 17:611–619

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonaldi A, Mazzeu JF, Costa SS, Honjo RS, Bertola DR, Albano LM, Furquim IM, Kim CA, Vianna-Morgante AM (2011) Microduplication of the ICR2 domain at chromosome 11p15 and familial Silver-Russell syndrome. Am J Med Genet A 155A(10):2479–2483

    PubMed  Google Scholar 

  • Brioude F, Lacoste A, Netchine I, Vazquez MP, Auber F, Audry G, Gauthier-Villars M, Brugieres L, Gicquel C, Le Bouc Y, Rossignol S.(2013a) Beckwith-Wiedemann syndrome: growth pattern and tumor risk according to molecular mechanism, and guidelines for tumor surveillance. Horm Res Paediatr 80(6):457–465

    Google Scholar 

  • Brioude F, Oliver-Petit I, Blaise A, Praz F, Rossignol S, Jule ML, Thibaud N, Faussat AM, Tauber M, Bouc YL, Netchine I (2013b) CDKN1C mutation affecting the PCNA binding domain as a cause M of familial Russell Silver Syndrome. J Med Genet 50(12):823–830

    Google Scholar 

  • Bruce S, Hannula-Jouppi K, Peltonen J, Kere J, Lipsanen-Nyman M (2009) Clinically distinct epigenetic subgroups in Silver-Russell syndrome: the degree of H19 hypomethylation associates with phenotype severity and genital and skeletal anomalies. J Clin Endocrinol Metab 94:579–587

    CAS  PubMed  Google Scholar 

  • Bruce S, Hannula-Jouppi K, Puoskari M, Fransson I, Simola KO, Lipsanen-Nyman M, Kere J (2010) Submicroscopic genomic alterations in Silver-Russell syndrome and Silver-Russell-like patients. J Med Genet 47:816–822

    PubMed  Google Scholar 

  • Bullman H, Lever M, Robinson DO, Mackay DJ, Holder SE, Wakeling EL (2008) Mosaic maternal uniparental disomy of chromosome 11 in a patient with Silver-Russell syndrome. J Med Genet 45:396–399

    CAS  PubMed  Google Scholar 

  • Cheng X, Blumenthal RM (2008) Mammalian DNA methyltransferases: a structural perspective. Structure 16:341–350

    PubMed Central  PubMed  Google Scholar 

  • Chiesa N, De Crescenzo A, Mishra K, Perone L, Carella M, Palumbo O, Mussa A, Sparago A, Cerrato F, Russo S, Lapi E, Cubellis MV, Kanduri C, Cirillo Silengo M, Riccio A, Ferrero GB (2011) The KCNQ1OT1 Imprinting Control Region and non-coding RNA: new properties derived from the study of Beckwith-Wiedemann syndrome and Silver-Russell syndrome cases. Hum Mol Genet 21:10–25

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choufani S, Shuman C, Weksberg R (2010) Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet 154C:343–354

    CAS  PubMed  Google Scholar 

  • Coan PM, Burton GJ, Ferguson-Smith AC (2005) Imprinted genes in the placenta—a review. Placenta 26(4):S10–S20

    PubMed  Google Scholar 

  • Constância M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R, Stewart F, Kelsey G, Fowden A, Sibley C, Reik W (2002) Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417:945–948

    PubMed  Google Scholar 

  • Cooper WN, Luharia A, Evans GA, Raza H, Haire AC, Grundy R, Bowdin SC, Riccio A, Sebastio G, Bliek J, Schofield PN, Reik W, Macdonald F, Maher ER (2005) Molecular subtypes and phenotypic expression of Beckwith-Wiedemann syndrome. Eur J Hum Genet 13:1025–1032

    CAS  PubMed  Google Scholar 

  • Cooper WN, Curley R, Macdonald F, Maher ER (2007) Mitotic recombination and uniparental disomy in Beckwith-Wiedemann syndrome. Genomics 89:613–617

    CAS  PubMed  Google Scholar 

  • Court F, Martin-Trujillo A, Romanelli V, Garin I, Iglesias-Platas I, Salafsky I, Guitart M, Perez de Nanclares G, Lapunzina P, Monk D (2013) Genome-wide allelic methylation analysis reveals disease-specific susceptibility to multiple methylation defects in imprinting syndromes. Hum Mutat 34:595–602

    CAS  PubMed  Google Scholar 

  • DeBaun MR, Niemitz EL, Feinberg AP (2003) Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet 72(1):156–160

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeBaun MR, Tucker MA (1998) Risk of cancer during the first four years of life in children from The Beckwith-Wiedemann Syndrome registry. J Pediatr 132(3 Pt 1):398–400

    CAS  PubMed  Google Scholar 

  • De Crescenzo A, Coppola F, Falco P, Bernardo I, Ausanio G, Cerrato F, Falco L, Riccio A (2011) A novel microdeletion in the IGF2/H19 imprinting centre region defines a recurrent mutation mechanism in familial Beckwith-Wiedemann syndrome. Eur J Med Genet 54:e451–e454

    PubMed Central  PubMed  Google Scholar 

  • De Crescenzo A, Sparago A, Cerrato F, Palumbo O, Carella M, Miceli M, Bronshtein M, Riccio A, Yaron Y (2013) Paternal deletion of the 11p15.5 centromeric-imprinting control region is associated with alteration of imprinted gene expression and recurrent severe intrauterine growth restriction. J Med Genet 50:99–103

    PubMed Central  PubMed  Google Scholar 

  • DeChiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:849–859

    CAS  PubMed  Google Scholar 

  • Demars J, Shmela ME, Rossignol S, Okabe J, Netchine I, Azzi S, Cabrol S, Le Caignec C, David A, Le Bouc Y, El-Osta A, Gicquel C (2010) Analysis of the IGF2/H19 imprinting control region uncovers new genetic defects, including mutations of OCT-binding sequences, in patients with 11p15 fetal growth disorders. Hum Mol Genet 19:803–814

    CAS  PubMed  Google Scholar 

  • Demars J, Le Bouc Y, El-Osta A, Gicquel C (2011a) Epigenetic and genetic mechanisms of abnormal 11p15 genomic imprinting in Silver-Russell and Beckwith-Wiedemann syndromes. Curr Med Chem 18:1740–1750

    CAS  PubMed  Google Scholar 

  • Demars J, Rossignol S, Netchine I, Lee KS, Shmela M, Faivre L, Weill J, Odent S, Azzi S, Callier P, Lucas J, Dubourg C, Andrieux J, Le Bouc Y, El-Osta A, Gicquel C (2011b) New insights into the pathogenesis of Beckwith-Wiedemann and Silver-Russell syndromes: contribution of small copy number variations to 11p15 imprinting defects. Hum Mutat 32:1171–1182

    CAS  PubMed  Google Scholar 

  • Donohoe ME, Silva SS, Pinter SF, Xu N, Lee JT (2009) The pluripotency factor Oct4 interacts with Ctcf and also controls X-chromosome pairing and counting. Nature 460:128–132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards CA, Ferguson-Smith AC (2007) Mechanisms regulating imprinted genes in clusters. Curr Opin Cell Biol 19:281–289

    CAS  PubMed  Google Scholar 

  • Eggermann T, Schonherr N, Meyer E, Obermann C, Mavany M, Eggermann K, Ranke MB, Wollmann HA (2006) Epigenetic mutations in 11p15 in Silver-Russell syndrome are restricted to the telomeric imprinting domain. J Med Genet 43:615–616

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eggermann T, Spengler S, Begemann M, Binder G, Buiting K, Albrecht B, Spranger S (2012) Deletion of the paternal allele of the imprinted MEST/PEG1 region in a patient with Silver-Russell syndrome features. Clin Genet 81:298–300

    CAS  PubMed  Google Scholar 

  • Eggermann T, Algar E, Lapunzina P, Mackay D, Maher ER, Mannens M, Netchine I, Prawitt D, Riccio A, Temple IK, Weksberg R (2013) Clinical utility gene card for: Beckwith-Wiedemann syndrome. Eur J Hum Genet. doi:10.1038/ejhg.2013.132

    Google Scholar 

  • Elliott M, Bayly R, Cole T, Temple IK, Maher ER (1994) Clinical features and natural history of Beckwith-Wiedemann syndrome: presentation of 74 new cases. Clin Genet 46(2):168–174

    CAS  PubMed  Google Scholar 

  • Fowden AL, Coan PM, Angiolini E, Burton GJ, Constancia M (2011) Imprinted genes and the epigenetic regulation of placental phenotype. Prog Biophys Mol Biol 106(1):281–288

    CAS  PubMed  Google Scholar 

  • Fowden AL, Forhead AJ, Coan PM, Burton GJ (2008) The placenta and intrauterine programming. J Neuroendocrinol 20(4):439–450

    CAS  PubMed  Google Scholar 

  • Frost JM, Moore GE (2010) The importance of imprinting in the human placenta. PLoS Genet 6(7):e1001015

    PubMed Central  PubMed  Google Scholar 

  • Gabory A, Ripoche MA, Le Digarcher A, Watrin F, Ziyyat A, Forné T, Jammes H, Ainscough JF, Surani MA, Journot L, Dandolo L (2009) H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development 136(20):3413–3421

    CAS  PubMed  Google Scholar 

  • Gaston V, Le Bouc Y, Soupre V, Burglen L, Donadieu J, Oro H, Audry G, Vazquez MP, Gicquel C (2001) Analysis of the methylation status of the KCNQ1OT and H19 genes in leukocyte DNA for the diagnosis and prognosis of Beckwith-Wiedemann syndrome. Eur J Hum Genet 9:409–418

    CAS  PubMed  Google Scholar 

  • Ghanim M, Rossignol S, Delobel B, Irving M, Miller O, Devisme L, Plennevaux JL, Lucidarme-Rossi S, Manouvrier S, Salah A, Chivu O, Netchine I, Vincent-Delorme C (2013) Possible association between complex congenital heart defects and 11p15 hypomethylation in three patients with severe Silver-Russell syndrome. Am J Med Genet A 161A:572–577

    PubMed  Google Scholar 

  • Gicquel C, Gaston V, Mandelbaum J, Siffroi JP, Flahault A, Le Bouc Y (2003) In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. Am J Hum Genet 72(5):1338–1341

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gicquel C, Rossignol S, Cabrol S, Houang M, Steunou V, Barbu V, Danton F, Thibaud N, Le Merrer M, Burglen L, Bertrand AM, Nechine I, Le Bouc Y (2005a) Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver-Russell syndrome. Nat Genet 37:1003–1007

    CAS  PubMed  Google Scholar 

  • Gicquel C, Rossignol S, Le Bouc Y (2005b) Beckwith-Wiedemann syndrome. Orphanet Encyclopedia, http://www.orpha.net/data/patho/GB/uk-BWS05.pdf

  • Grønskov K, Poole RL, Hahnemann JM, Thomson J, Tümer Z, Brøndum-Nielsen K, Murphy R, Ravn K, Melchior L, Dedic A, Dolmer B, Temple IK, Boonen SE, Mackay DJ (2011) Deletions and rearrangements of the H19/IGF2 enhancer region in patients with Silver-Russell syndrome and growth retardation. J Med Genet 48(5):308–311

    PubMed  Google Scholar 

  • Guettard E, Portnoi MF, Lohmann-Hedrich K, Keren B, Rossignol S, Winkler S, El Kamel I, Leu S, Apartis E, Vidailhet M, Klein C, Roze E (2008) Myoclonus-dystonia due to maternal uniparental disomy. Arch Neurol 65(10):1380–1385

    PubMed  Google Scholar 

  • Gutierrez-Marcos JF, Constância M, Burton GJ (2012) Maternal to offspring resource allocation in plants and mammals. Placenta 33(Suppl 2):e3–e10

    PubMed  Google Scholar 

  • Halliday J, Oke K, Breheny S, Algar E, J Amor D (2004) Beckwith-Wiedemann syndrome and IVF: a case–control study. Am J Hum Genet 75(3):526–528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hannula K, Lipsanen-Nyman M, Kontiokari T, Kere J (2001) A narrow segment of maternal uniparental disomy of chromosome 7q31-qter in Silver-Russell syndrome delimits a candidate gene region. Am J Hum Genet 68:247–253

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hark AT, Schoenherr CJ, Ingram RS, Levorse JM, Tilghman SM (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405:486–489

    CAS  PubMed  Google Scholar 

  • Heasman L, Clarke L, Firth K, Stephenson T, Symonds ME (1998) Influence of restricted maternal nutrition in early to mid gestation on placental and fetal development at term in sheep. Pediatr Res 44(4):546–551

    CAS  PubMed  Google Scholar 

  • Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105(44):17046–17049

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henckel A, Nakabayashi K, Sanz LA, Feil R, Hata K, Arnaud P (2009) Histone methylation is mechanistically linked to DNA methylation at imprinting control regions in mammals. Hum Mol Genet 18(18):3375–3383

    CAS  PubMed  Google Scholar 

  • Henry I, Puech A, Riesewijk A, Ahnine L, Mannens M, Beldjord C, Bitoun P, Tournade MF, Landrieu P, Junien C (1993) Somatic mosaicism for partial paternal isodisomy in Wiedemann-Beckwith syndrome: a post-fertilization event. Eur J Hum Genet 1(1):19–29

    CAS  PubMed  Google Scholar 

  • Hitchins MP, Monk D, Bell GM, Ali Z, Preece MA, Stanier P, Moore GE (2001a) Maternal repression of the human GRB10 gene in the developing central nervous system; evaluation of the role for GRB10 in Silver-Russell syndrome. Eur J Hum Genet 9:82–90

    CAS  PubMed  Google Scholar 

  • Hitchins MP, Stanier P, Preece MA, Moore GE (2001b) Silver-Russell syndrome: a dissection of the genetic aetiology and candidate chromosomal regions. J Med Genet 38:810–819

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hori N, Nakano H, Takeuchi T, Kato H, Hamaguchi S, Oshimura M, Sato K (2002) A dyad oct-binding sequence functions as a maintenance sequence for the unmethylated state within the H19/Igf2-imprinted control region. J Biol Chem 277:27960–27967

    CAS  PubMed  Google Scholar 

  • Hori N, Yamane M, Kouno K, Sato K (2012) Induction of DNA demethylation depending on two sets of Sox2 and adjacent Oct3/4 binding sites (Sox-Oct motifs) within the mouse H19/insulin-like growth factor 2 (Igf2) imprinted control region. J Biol Chem 287:44006–44016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ideraabdullah FY, Vigneau S, Bartolomei MS (2008) Genomic imprinting mechanisms in mammals. Mutat Res 647:77–85

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joyce CA, Sharp A, Walker JM, Bullman H, Temple IK (1999) Duplication of 7p12.1-p13, including GRB10 and IGFBP1, in a mother and daughter with features of Silver-Russell syndrome. Hum Genet 105:273–280

    CAS  PubMed  Google Scholar 

  • Kagami M, Nagai T, Fukami M, Yamazawa K, Ogata T (2007) Silver-Russell syndrome in a girl born after in vitro fertilization: partial hypermethylation at the differentially methylated region of PEG1/MEST. J Assist Reprod Genet 24:131–136

    PubMed Central  PubMed  Google Scholar 

  • Kannenberg K, Urban C, Binder G (2012) Increased incidence of aberrant DNA methylation within diverse imprinted gene loci outside of IGF2/H19 in Silver-Russell syndrome. Clin Genet 81:366–377

    CAS  PubMed  Google Scholar 

  • Kasowski M, Grubert F, Heffelfinger C, Hariharan M, Asabere A, Waszak SM, Habegger L, Rozowsky J, Shi M, Urban AE, Hong MY, Karczewski KJ, Huber W, Weissman SM, Gerstein MB, Korbel JO, Snyder M (2010) Variation in transcription factor binding among humans. Science 328(5975):232–235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaufman Y, Heled M, Perk J, Razin A, Shemer R (2009) Protein-binding elements establish in the oocyte the primary imprint of the Prader-Willi/Angelman syndromes domain. Proc Natl Acad Sci U S A 106(25):10242–10247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keren B, Chantot-Bastaraud S, Brioude F, Mach C, Fonteneau E, Azzi S, Depienne C, Brice A, Netchine I, Le Bouc Y, Siffroi JP, Rossignol S (2013) SNP arrays in Beckwith-Wiedemann syndrome: an improved diagnostic strategy. Eur J Med Genet 56(10):546–550. doi:10.1016/j.ejmg.2013.06.005, pii: S1769-7212(13)00134-1

    PubMed  Google Scholar 

  • Kim YJ, Cecchini KR, Kim TH (2011) Conserved, developmentally regulated mechanism couples chromosomal looping and heterochromatin barrier activity at the homeobox gene A locus. Proc Natl Acad Sci U S A 108(18):7391–7396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97

    CAS  PubMed  Google Scholar 

  • Kobayashi S, Uemura H, Kohda T, Nagai T, Chinen Y, Naritomi K (2001) No evidence of PEG1/MEST gene mutations in Silver-Russell syndrome patients. Am J Med Genet 104:225–231

    CAS  PubMed  Google Scholar 

  • Lefebvre L (2012) The placental imprintome and imprinted gene function in the trophoblast glycogen cell lineage. Reprod Biomed Online 25(1):44–57

    CAS  PubMed  Google Scholar 

  • Lewis A, Mitsuya K, Umlauf D, Smith P, Dean W, Walter J, Higgins M, Feil R, Reik W (2004) Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat Genet 36:1291–1295

    CAS  PubMed  Google Scholar 

  • Lim D, Bowdin SC, Tee L, Kirby GA, Blair E, Fryer A, Lam W, Oley C, Cole T, Brueton LA, Reik W, Macdonald F, Maher ER (2009) Clinical and molecular genetic features of Beckwith-Wiedemann syndrome associated with assisted reproductive technologies. Hum Reprod 24:741–747

    PubMed  Google Scholar 

  • Lucifero D, Mertineit C, Clarke HJ, Bestor TH, Trasler JM (2002) Methylation dynamics of imprinted genes in mouse germ cells. Genomics 79:530–538

    CAS  PubMed  Google Scholar 

  • Ludwig M, Katalinic A, Gross S, Sutcliffe A, Varon R, Horsthemke B (2005) Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples. J Med Genet 42:289–291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lumey LH (1998) Compensatory placental growth after restricted maternal nutrition in early pregnancy. Placenta 19(1):105–111

    CAS  PubMed  Google Scholar 

  • Mackay DJ, Boonen SE, Clayton-Smith J, Goodship J, Hahnemann JM, Kant SG, Njølstad PR, Robin NH, Robinson DO, Siebert R, Shield JP, White HE, Temple IK (2006) A maternal hypomethylation syndrome presenting as transient neonatal diabetes mellitus. Hum Genet 120:262–269

    CAS  PubMed  Google Scholar 

  • Mackay DJ, Callaway JL, Marks SM, White HE, Acerini CL, Boonen SE, Dayanikli P, Firth HV, Goodship JA, Haemers AP, Hahnemann JM, Kordonouri O, Masoud AF, Oestergaard E, Storr J, Ellard S, Hattersley AT, Robinson DO, Temple IK (2008) Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet 40:949–951

    CAS  PubMed  Google Scholar 

  • Maher ER, Brueton LA, Bowdin SC, Luharia A, Cooper W, Cole TR, Macdonald F, Sampson JR, Barratt CL, Reik W, Hawkins MM (2003) Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet 40(1):62–64

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maupetit-Mehouas S, Azzi S, Steunou V, Sakakini N, Silve C, Reynes C, Perez de Nanclares G, Keren B, Chantot S, Barlier A, Linglart A, Netchine I (2013) Simultaneous hyper- and hypomethylation at imprinted loci in a subset of patients with GNAS epimutations underlies a complex and different mechanism of multilocus methylation defect in pseudohypoparathyroidism Type 1b. Hum Mutat 34:1172–1180

    CAS  PubMed  Google Scholar 

  • McCann JA, Zheng H, Islam A, Goodyer CG, Polychronakos C (2001) Evidence against GRB10 as the gene responsible for Silver-Russell syndrome. Biochem Biophys Res Commun 286:943–948

    CAS  PubMed  Google Scholar 

  • McDaniell R, Lee BK, Song L, Liu Z, Boyle AP, Erdos MR, Scott LJ, Morken MA, Kucera KS, Battenhouse A, Keefe D, Collins FS, Willard HF, Lieb JD, Furey TS, Crawford GE, Iyer VR, Birney E (2010) Heritable individual-specific and allele-specific chromatin signatures in humans. Science 328(5975):235–239

    CAS  PubMed Central  PubMed  Google Scholar 

  • McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183

    CAS  PubMed  Google Scholar 

  • Meyer E, Lim D, Pasha S, Tee LJ, Rahman F, Yates JR, Woods CG, Reik W, Maher ER (2009) Germline mutation in NLRP2 (NALP2) in a familial imprinting disorder (Beckwith-Wiedemann Syndrome). PLoS Genet 5:e1000423. doi:10.1371/journal.pgen.1000423

    PubMed Central  PubMed  Google Scholar 

  • Monk DE, Wakeling EL, Proud V, Hitchins M, Abu-Amero SN, Stanier P, Preece MA, Moore GE (2000) Duplication of 7p11.2-p13, including GRB10, in Silver-Russell syndrome. Am J Hum Genet 66:36–46

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monk D, Arnaud P, Apostolidou S, Hills FA, Kelsey G, Stanier P, Feil R, Moore GE (2006) Limited evolutionary conservation of imprinting in the human placenta. Proc Natl Acad Sci U S A 103:6623–6628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy R, Ibanez L, Hattersley A, Tost J (2012) IGF2/H19 hypomethylation in a patient with very low birthweight, preocious pubarche and insulin resistance. BMC Med Genet 13:42

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nativio R, Sparago A, Ito Y, Weksberg R, Riccio A, Murrell A (2011) Disruption of genomic neighbourhood at the imprinted IGF2-H19 locus in Beckwith-Wiedemann syndrome and Silver-Russell syndrome. Hum Mol Genet 20(7):1363–1374

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nelissen EC, van Montfoort AP, Dumoulin JC, Evers JL (2011) Epigenetics and the placenta. Hum Reprod Update 17(3):397–417

    CAS  PubMed  Google Scholar 

  • Netchine I, Rossignol S, Dufourg MN, Azzi S, Rousseau A, Perin L, Houang M, Steunou V, Esteva B, Thibaud N, Demay MC, Danton F, Petriczko E, Bertrand AM, Heinrichs C, Carel JC, Loeuille GA, Pinto G, Jacquemont ML, Gicquel C, Cabrol S, Le Bouc Y (2007) 11p15 imprinting center region 1 loss of methylation is a common and specific cause of typical Russell-Silver syndrome: clinical scoring system and epigenetic-phenotypic correlations. J Clin Endocrinol Metab 92:3148–3154

    CAS  PubMed  Google Scholar 

  • Niemitz EL, DeBaun MR, Fallon J, Murakami K, Kugoh H, Oshimura M, Feinberg AP (2004) Microdeletion of LIT1 in familial Beckwith-Wiedemann syndrome. Am J Hum Genet 75:844–849

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nyström A, Cheetham JE, Engström W, Schofield PN (1992) Molecular analysis of patients with Wiedemann-Beckwith syndrome. II. Paternally derived disomies of chromosome 11. Eur J Pediatr 151(7):511–514

    PubMed  Google Scholar 

  • Obermann C, Meyer E, Prager S, Tomiuk J, Wollmann HA, Eggermann T (2004) Searching for genomic variants in IGF2 and CDKN1C in Silver-Russell syndrome patients. Mol Genet Metab 82:246–250

    CAS  PubMed  Google Scholar 

  • Penaherrera MS, Weindler S, Van Allen MI, Yong S-L, Metzger DL, McGillivray B, Boerkoel C, Langlois S, Robinson WP (2010) Methylation profiling in individuals with Russell-Silver syndrome. Am J Med Genet A 152A:347–355

    CAS  PubMed  Google Scholar 

  • Perez-Nanclares G, Romanelli V, Mayo S, Garin I, Zazo C, Fernandez-Rebollo E, Martínez F, Lapunzina P, de Nanclares GP (2012) Detection of hypomethylation syndrome among patients with epigenetic alterations at the GNAS locus. J Clin Endocrinol Metab 97:E1060–E1067

    CAS  PubMed  Google Scholar 

  • Pettenati MJ, Haines JL, Higgins RR, Wappner RS, Palmer CG, Weaver DD (1986) Wiedemann-Beckwith syndrome: presentation of clinical and cytogenetic data on 22 new cases and review of the literature. Hum Genet 74(2):143–154

    CAS  PubMed  Google Scholar 

  • Poole RL, Leith DJ (2012) Beckwith-Wiedemann syndrome caused by maternally inherited mutation of an OCT-binding motif in the IGF2/H19-imprinting control region, ICR1. Eur J Hum Genet 20:240–243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poole RL, Docherty LE, Al Sayegh A, Caliebe A, Turner C, Baple E, Wakeling E, Harrison L, Lehmann A, Temple IK, Mackay DJ (2013) Targeted methylation testing of a patient cohort broadens the epigenetic and clinical description of imprinting disorders. Am J Med Genet A 161:2174–2182

    PubMed  Google Scholar 

  • Prawitt D, Enklaar T, Gärtner-Rupprecht B, Spangenberg C, Oswald M, Lausch E, Schmidtke P, Reutzel D, Fees S, Lucito R, Korzon M, Brozek I, Limon J, Pelletier J, Housman DE, Zabel B (2005) Microdeletion of target sites for insulator protein CTCF in a chromosome 11p15 imprinting center in Beckwith-Wiedemann syndrome and Wilms’ tumor. Proc Natl Acad Sci U S A 102:4085–4090

    CAS  PubMed Central  PubMed  Google Scholar 

  • Preece MA (2002) The genetics of the Silver-Russell syndrome. Rev Endocr Metab Disord 3:369–379

    CAS  PubMed  Google Scholar 

  • Price SM, Stanhope R, Garrett C, Preece MA, Trembath RC (1999) The spectrum of Silver-Russell syndrome: a clinical and molecular genetic study and new diagnostic criteria. J Med Genet 36:837–842

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    CAS  PubMed  Google Scholar 

  • Reik W, Constância M, Fowden A, Anderson N, Dean W, Ferguson-Smith A, Tycko B, Sibley C (2003) Regulation of supply and demand for maternal nutrients in mammals by imprinted genes. J Physiol 547:35–44

    CAS  PubMed Central  PubMed  Google Scholar 

  • Riesewijk AM, Blagitko N, Schinzel AA, Hu L, Schulz U, Hamel BC, Ropers HH, Kalscheuer VM (1998) Evidence against a major role of PEG1/MEST in Silver-Russell syndrome. Eur J Hum Genet 6:114–120

    CAS  PubMed  Google Scholar 

  • Romanelli V, Meneses HN, Fernández L, Martínez-Glez V, Gracia-Bouthelier R, Fraga M, Guillén E, Nevado J, Gean E, Martorell L, Marfil VE, García-Miñaur S, Lapunzina P (2011) Beckwith-Wiedemann syndrome and uniparental disomy 11p: fine mapping of the recombination breakpoints and evaluation of several techniques. Eur J Hum Genet 19:416–421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rossignol S, Steunou V, Chalas C, Kerjean A, Rigolet M, Viegas-Pequignot E, Jouannet P, Le Bouc Y, Gicquel C (2006) The epigenetic imprinting defect of patients with Beckwith-Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region. J Med Genet 43:902–907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rump P, Zeegers MP, van Essen AJ (2005) Tumor risk in Beckwith-Wiedemann syndrome: a review and meta-analysis. Am J Med Genet A 136:95–104

    CAS  PubMed  Google Scholar 

  • Russell AS, Jackson C (1954) Fetal mortality conference; an interdepartmental approach to neonatal and fetal mortality. Curr Res Anesth Analg 33:277–281

    CAS  PubMed  Google Scholar 

  • Russo S, Finelli P, Recalcati MP, Ferraiuolo S, Cogliati F, Dalla Bernardina B, Tibiletti MG, Agosti M, Sala M, Bonati MT, Larizza L (2006) Molecular and genomic characterisation of cryptic chromosomal alterations leading to paternal duplication of the 11p15.5 Beckwith-Wiedemann region. J Med Genet 43:e39

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakaguchi R, Okamura E, Matsuzaki H, Fukamizu A, Tanimoto K (2013) Sox-Oct motifs contribute to maintenance of the unmethylated H19 ICR in YAC transgenic mice. Hum Mol Genet 22(22):4627–4637. doi:10.1093/hmg/ddt311

    CAS  PubMed  Google Scholar 

  • Sandovici I, Hoelle K, Angiolini E, Constância M (2012) Placental adaptations to the maternal-fetal environment: implications for fetal growth and developmental programming. Reprod Biomed Online 25:68–89

    PubMed  Google Scholar 

  • Santos F, Dean W (2004) Epigenetic reprogramming during early development in mammals. Reproduction 127:643–651

    CAS  PubMed  Google Scholar 

  • Schneid H, Seurin D, Vazquez MP, Gourmelen M, Cabrol S, Le Bouc Y (1993) Parental allele specific methylation of the human insulin-like growth factor II gene and Beckwith-Wiedemann syndrome. J Med Genet 30(5):353–362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schönherr N, Meyer E, Roos A, Schmidt A, Wollmann HA, Eggermann T (2007) The centromeric 11p15 imprinting centre is also involved in Silver-Russell syndrome. J Med Genet 44(1):59–63

    PubMed Central  PubMed  Google Scholar 

  • Scott RH, Douglas J, Baskcomb L, Huxter N, Barker K, Hanks S, Craft A, Gerrard M, Kohler JA, Levitt GA, Picton S, Pizer B, Ronghe MD, Williams D, Factors Associated with Childhood Tumours (FACT) Collaboration, Cook JA, Pujol P, Maher ER, Birch JM, Stiller CA, Pritchard-Jones K, Rahman N (2008) Constitutional 11p15 abnormalities, including heritable imprinting center mutations, cause nonsyndromic Wilms tumor. Nat Genet 40:1329–1334

    CAS  PubMed  Google Scholar 

  • Sibley CP, Brownbill P, Dilworth M, Glazier JD (2010) Review: adaptation in placental nutrient supply to meet fetal growth demand: implications for programming. Placenta 31:S70–S74

    PubMed  Google Scholar 

  • Silver HK, Kiyasu W, George J, Deamer WC (1953) Syndrome of congenital hemihypertrophy, shortness of stature, and elevated urinary gonadotropins. Pediatrics 12:368–376

    CAS  PubMed  Google Scholar 

  • Soejima H, Higashimoto K (2013) Epigenetic and genetic alterations of the imprinting disorder Beckwith-Wiedemann syndrome and related disorders. J Hum Genet 58:402–409

    CAS  PubMed  Google Scholar 

  • Sotelo-Avila C, Gonzalez-Crussi F, Fowler JW (1980) Complete and incomplete forms of Beckwith-Wiedemann syndrome: their oncogenic potential. J Pediatr 96(1):47–50

    CAS  PubMed  Google Scholar 

  • Sparago A, Cerrato F, Vernucci M, Ferrero GB, Silengo MC, Riccio A (2004) Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith-Wiedemann syndrome. Nat Genet 36:958–960

    CAS  PubMed  Google Scholar 

  • Sparago A, Russo S, Cerrato F, Ferraiuolo S, Castorina P, Selicorni A, Schwienbacher C, Negrini M, Ferrero GB, Silengo MC, Anichini C, Larizza L, Riccio A (2007) Mechanisms causing imprinting defects in familial Beckwith-Wiedemann syndrome with Wilms’ tumour. Hum Mol Genet 16:254–264

    CAS  PubMed  Google Scholar 

  • Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548–550

    CAS  PubMed  Google Scholar 

  • Svensson J, Björnståhl A, Ivarsson SA (2005) Increased risk of Silver-Russell syndrome after in vitro fertilization? Acta Paediatr 94(8):1163–1165

    PubMed  Google Scholar 

  • Takahashi K, Kobayashi T, Kanayama N (2000) p57(Kip2) regulates the proper development of labyrinthine and spongiotrophoblasts. Mol Hum Reprod 6:1019–1025

    CAS  PubMed  Google Scholar 

  • Thorburn MJ, Wright ES, Miller CG, Smith-Read EH (1970) Exomphalos-macroglossia-gigantism syndrome in Jamaican infants. Am J Dis Child 119:316–321

    CAS  PubMed  Google Scholar 

  • Tunster SJ, Van de Pette M, John RM (2011) Fetal overgrowth in the Cdkn1c mouse model of Beckwith-Wiedemann syndrome. Dis Model Mech 4:814–821

    CAS  PubMed Central  PubMed  Google Scholar 

  • Turner CL, Mackay DM, Callaway JL, Docherty LE, Poole RL, Bullman H, Lever M, Castle BM, Kivuva EC, Turnpenny PD, Mehta SG, Mansour S, Wakeling EL, Mathew V, Madden J, Davies JH, Temple IK (2010) Methylation analysis of 79 patients with growth restriction reveals novel patterns of methylation change at imprinted loci. Eur J Hum Genet 18:648–655

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tycko B (2010) Allele-specific DNA methylation: beyond imprinting. Hum Mol Genet 19:R210–R220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Umlauf D, Goto Y, Cao R, Cerqueira F, Wagschal A, Zhang Y, Feil R (2004) Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat Genet 36:1296–1300

    CAS  PubMed  Google Scholar 

  • Usher R, McLean F (1969) Intrauterine growth of live-born Caucasian infants at sea level: standards obtained from measurements in 7 dimensions of infants born between 25 and 44 weeks of gestation. J Pediatr 74:901–910

    CAS  PubMed  Google Scholar 

  • Varrault A, Gueydan C, Delalbre A, Bellmann A, Houssami S, Aknin C, Severac D, Chotard L, Kahli M, Le Digarcher A, Pavlidis P, Journot L (2006) Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell 11(5):711–722

    CAS  PubMed  Google Scholar 

  • Wakeling EL, Amero SA, Alders M, Bliek J, Forsythe E, Kumar S, Lim DH, MacDonald F, Mackay DJ, Maher ER, Moore GE, Poole RL, Price SM, Tangeraas T, Turner CL, Van Haelst MM, Willoughby C, Temple IK, Cobben JM (2010) Epigenotype-phenotype correlations in Silver-Russell syndrome. J Med Genet 47:760–768

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wan LB, Bartolomei MS (2008) Regulation of imprinting in clusters: noncoding RNAs versus insulators. Adv Genet 61:207–223

    CAS  PubMed  Google Scholar 

  • Weksberg R, Nishikawa J, Caluseriu O, Fei YL, Shuman C, Wei C, Steele L, Cameron J, Smith A, Ambus I, Li M, Ray PN, Sadowski P, Squire J (2001) Tumor development in the Beckwith-Wiedemann syndrome is associated with a variety of constitutional molecular 11p15 alterations including imprinting defects of KCNQ1OT1. Hum Mol Genet 10(26):2989–3000

    CAS  PubMed  Google Scholar 

  • Weksberg R, Shuman C, Caluseriu O, Smith AC, Fei YL, Nishikawa J, Stockley TL, Best L, Chitayat D, Olney A, Ives E, Schneider A, Bestor TH, Li M, Sadowski P, Squire J (2002) Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith-Wiedemann syndrome. Hum Mol Genet 11:1317–1325

    CAS  PubMed  Google Scholar 

  • Weksberg R, Shuman C, Smith AC (2005) Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet 137C:12–23

    PubMed  Google Scholar 

  • Weth O, Renkawitz R (2011) CTCF function is modulated by neighboring DNA binding factors. Biochem Cell Biol 89(5):459–468

    CAS  PubMed  Google Scholar 

  • Wiedemann HR (1969) The EMG-syndrome: exomphalos, macroglossia, gigantism and disturbed carbohydrate metabolism. Z Kinderheilkd 106(3):171–185

    CAS  PubMed  Google Scholar 

  • Wu G, Imhoff-Kunsch B, Girard AW (2012) Biological mechanisms for nutritional regulation of maternal health and fetal development. Paediatr Perinat Epidemiol 26:4–26

    PubMed  Google Scholar 

  • Yamazawa K, Kagami M, Fukami M, Matsubara K, Ogata T (2008a) Monozygotic female twins discordant for Silver-Russell syndrome and hypomethylation of the H19-DMR. J Hum Genet 53:950–955

    PubMed  Google Scholar 

  • Yamazawa K, Kagami M, Nagai T, Kondoh T, Onigata K, Maeyama K, Hasegawa T, Hasegawa Y, Yamazaki T, Mizuno S, Miyoshi Y, Miyagawa S, Horikawa R, Matsuoka K, Ogata T (2008b) Molecular and clinical findings and their correlations in Silver-Russell syndrome: implications for a positive role of IGF2 in growth determination and differential imprinting regulation of the IGF2-H19 domain in bodies and placentas. J Mol Med (Berl) 86:1171–1181

    CAS  Google Scholar 

  • Yoshihashi H, Maeyama K, Kosaki R, Ogata T, Tsukahara M, Goto Y, Hata J, Matsuo N, Smith RJ, Kosaki K (2000) Imprinting of human GRB10 and its mutations in two patients with Russell-Silver syndrome. Am J Hum Genet 67:476–482

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang P, Liegeois NJ, Wong C, Finegold M, Hou H, Thompson JC, Silverman A, Harper JW, DePinho RA, Elledge SJ (1997) Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature 387:151–158

    CAS  PubMed  Google Scholar 

  • Zogel C, Bohringer S, Gross S, Varon R, Buiting K, Horsthemke B (2006) Identification of cis- and trans-acting factors possibly modifying the risk of epimutations on chromosome 15. Eur J Hum Genet 14:752–758

    CAS  PubMed  Google Scholar 

  • Zollino M, Orteschi D, Marangi G, De Crescenzo A, Pecile V, Riccio A, Neri G (2010) A case of Beckwith-Wiedemann syndrome caused by a cryptic 11p15 deletion encompassing the centromeric imprinted domain of the BWS locus. J Med Genet 47:429–432

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Le Bouc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gicquel, C. et al. (2014). Human Fetal Growth Disorders and Imprinting Anomalies. In: Seckl, J., Christen, Y. (eds) Hormones, Intrauterine Health and Programming. Research and Perspectives in Endocrine Interactions, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-02591-9_8

Download citation

Publish with us

Policies and ethics