Skip to main content

Dynamic Medium Scale Navigation Using Dynamic Floor Fields

  • Conference paper
  • First Online:
Pedestrian and Evacuation Dynamics 2012

Abstract

This contribution considers a new method for dynamic medium scale navigation in microscopic pedestrian simulators. The concept of static navigation floor fields is extended to a dynamic interpretation following ideas of (Kretz, T, Journal of Statistical Mechanics: Theory and Experiment, P03012, 2009) and (Hartmann, D, New Journal of Physics 12(4):043032, 2010) within a cellular automaton approach. Every few simulation steps a new floor field for navigation is constructed by solving the Eikonal equation on the dual grid of the underlying cellular automaton discretization. By considering other pedestrians directly in the construction of the floor field, the realism of the simulations is significantly increased. The new contribution of our work is to additionally consider walking directions of pedestrians. This leads to a significant increase in the realism of simulations.

The increased realism of the new concept is underlined by simulations of various example scenarios proposed in the literature. These show that the method is capable of reproducing a number of phenomena, e.g. lane formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellomo, N. & Dogbe, C. (2011): On the modeling of traffic and crowds: A survey of models, speculations, and perspectives. SIAM Rev. 53, 409–463.

    Article  MATH  MathSciNet  Google Scholar 

  2. Blue, V., Embrechts, M. & Adler, J. (1997): Cellular automata modeling of pedestrian movements. IEEE Int. Conf. on Systems, Man and Cybernetics.

    Google Scholar 

  3. Burstedde, C, Klauck, K., Schadschneider, A. & Zittarz, J. (2001): Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A: Statistical Mechanics and its Applications 295: 507–525.

    Article  MATH  Google Scholar 

  4. Chraibi, M., Seyfried, A. & Schadschneider, A. (2010): Generalized centrifugal force model for pedestrian dynamics. Phys. Rev. E 82. 046111.

    Google Scholar 

  5. Chraibi, M., Kemloh, U., Schadschneider, A. & Seyfried, A. (2011): Force-based models of pedestrian dynamics. Networks and Heterogeneous Media 6, 425–442.

    Article  MATH  MathSciNet  Google Scholar 

  6. Davidich, M.I. & Köster, G. (2012): Verification of Pedestrian Stream Models Based on Video Analysis. PED 2012.

    Google Scholar 

  7. Davidich, M.I., Mayer, H., Royer, C. & Pfaffinger, A. (2012): Modelling of Waiting Zones. PED 2012.

    Google Scholar 

  8. Hartmann, D. (2010): Adaptive pedestrian dynamics based on geodesics. New Journal of Physics 12 (4), 043032.

    Article  Google Scholar 

  9. Hartmann, D. & Hasel, P. (2011): Efficient floor field methods for microscopic pedestrian crowd simulations. Submitted

    Google Scholar 

  10. Helbing, D., Molnár, P., Farkas, I. & Bolay, K. (2001): Self-organizing pedestrian movement. Environment and Planning B: Planning and Design 2001 (28), 361–383.

    Article  Google Scholar 

  11. Helbing, D. (2001): Traffic and Related Self-Driven Many-Particle Systems.

    Google Scholar 

  12. Helbing, D. & Molnár, P. (1998): Social force model for pedestrian dynamics. Physical Review E 51: 4282–4286.

    Article  Google Scholar 

  13. Huang, H.-J. & Guo, R.-Y (2008): Static floor field and exit choice for pedestrian evacuation in rooms with internal obstacles and multiple exits. Phys. Rev. 78, 021131.

    Google Scholar 

  14. Kirik, E., Yurgelyan, T. & Krouglov, D. (2009): The shortest time and/or the shortest path strategies in a CA FF pedestrian dynamics model J. Siberian Fed. Univ. Math. Phys. 2 271–8.

    Google Scholar 

  15. Klüpfel, Hubert (2003): A cellular automaton model for crowd movement and egress simulation. PhD-Thesis Universität Duisburg-Essen.

    Google Scholar 

  16. A. Kneidl, D. Hartmann, A. Borrmann : A hybrid multi-scale approach for simulation of pedestrian dynamics, Transportation Research Part C: Emerging Technologies, Volume 37, December 2013, Pages 223–237

    Google Scholar 

  17. Köster, G., Hartmann, D. & Klein, W. (2010): Microscopic pedestrian simulations: From passenger exchange times to regional evacuation. Operations Research - Mastering complexity.

    Google Scholar 

  18. Köster, G., Treml, F., Seitz, M. & Klein, W. (2012): Validation of crowd models including social groups. PED 2012.

    Google Scholar 

  19. Kretz, T. (2009): Pedestrian traffic: on the quickest path. Journal of Statistical Mechanics: Theory and Experiment 2009, P03012

    Google Scholar 

  20. Mayer, H., Hartmann, D., Klein, W. & Zechlin, O. (2012): Influence of emissions on pedestrian evacuation. PED 2012.

    Google Scholar 

  21. Nishinari, K., Kirchner, A., Namazi, A. & Schadschneider, A (2004): Extended floor field CA model for evacuation dynamics. IEICE Trans. Inf. Syst. E87D, 726–732.

    Google Scholar 

  22. Parisi, D. R., Gilman, M. & Moldovan, H. (2009). A modification of the social force model can reproduce experimental data of pedestrian flows in normal conditions. Physica A 388: 3600–3608.

    Article  Google Scholar 

  23. Pelechano, N., Allbeck, J. M. & Badler, N. (2008): Virtual crowds: Methods, simulation, and control. Morgan & Claypool Publishers.

    Google Scholar 

  24. REPKA (2012): Regionale Evakuierung: Planung, Kontrolle und Anpassung. http://www.repka-evakuierung.de

  25. Reuter, V., Bergner, B., Köster, G., Seitz, M., Treml, F. & Hartmann, D. (2012): On Modeling Groups in Crowds: Empirical Evidence and Simulation Results Including Large Groups. PED 2012.

    Google Scholar 

  26. Schadschneider, A., Klingsch, W., Klüpfel, H. and Kretz, T., Rogsch, C. & Seyfried, A. (2009): Evacuation dynamics: Empirical results, modeling and applications. Encyclopedia of Complexity and System Science, 3142–3176.

    Google Scholar 

  27. Seitz, M., Köster, G. & Pfaffinger, A. (2012): Modeling pedestrian group behavior in a cellular automaton. PED 2012.

    Google Scholar 

  28. Sethian, J.A. (1999): Level Set Methods and Fast Marching Methods. Cambridge University Press.

    Google Scholar 

  29. Weidmann, U. (1993): Transporttechnik der Fussgänger: Transporttechnische Eigenschaften des Fussgängerverkehrs (Literaturauswertung). Schriftenreihe des IVT, ETH Zürich.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the German Federal Ministry of Education and Research who funded our research through the priority program Schutz und Rettung von Menschen within the project REPKA – Regional Evacuation: Planning, Control and Adaptation [24].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Hartmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hartmann, D., Mille, J., Pfaffinger, A., Royer, C. (2014). Dynamic Medium Scale Navigation Using Dynamic Floor Fields. In: Weidmann, U., Kirsch, U., Schreckenberg, M. (eds) Pedestrian and Evacuation Dynamics 2012. Springer, Cham. https://doi.org/10.1007/978-3-319-02447-9_102

Download citation

Publish with us

Policies and ethics