Skip to main content

Cadmium, Lead, Thallium: Occurrence, Neurotoxicity and Histopathological Changes of the Nervous System

  • Chapter
  • First Online:
Pollutant Diseases, Remediation and Recycling

Abstract

Metals, particularly heavy metals such as lead, cadmium and thallium between others, constitute significant potential threats to human health in both occupational and environmental settings. Metals toxicity most commonly involves the kidney, liver and mainly nervous system. Neurons in general have a high metabolic rate, which makes them more susceptible to different heavy metals producing changes in neuronal function may lead to secondary alterations in neuronal anatomy. Neuropathology is frequently used to evaluate the effects of toxic agents on nervous system organization and cellular components; thus, careful histologic evaluations increase our knowledge of the neurotoxicity of heavy metals. Structural changes can often be correlated with altered neurochemistry, behavior, and electrophysiologic function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agency for Toxic Substance and Disease Registry (ATSDR) (1999) Toxicological profile for thallium. U.S. Department of Health and Humans Services, Public Health Service, Centers for Diseases Control, Atlanta

    Google Scholar 

  • Agency for Toxic Substance and Disease Registry (ATSDR) (2007) Toxicological profile for lead. U.S. Department of Health and Humans Services, Public Health Service, Centers for Diseases Control, Atlanta

    Google Scholar 

  • Agency for Toxic Substance and Disease Registry (ATSDR) (2008) Toxicological profile for cadmium. U.S. Department of Health and Humans Services, Public Health Service, Centers for Diseases Control, Atlanta

    Google Scholar 

  • Ahamed M, Siddiqui MKJ (2007) Low level lead exposure and oxidative stress: current opinions. Clin Chim Acta 383(1–2):57–64

    CAS  Google Scholar 

  • Anderson AC, Pueschel SM, Linakis JG (1996) Pathophysiology of lead poisoning. In: Pueschel SM, Linakis JG, Anderson AC (eds) Lead poisoning in children. P.H. Brookes, Baltimore, pp 75–96

    Google Scholar 

  • Antonio MT, Corredor L, Leret ML (2003) Study of the activity of several brain enzymes like markers of the neurotoxicity induced by perinatal exposure to lead and/or cadmium. Toxicol Lett 143:331–340

    CAS  Google Scholar 

  • Araki S, Sato H, Yokoyama K, Murata K (2000) Subclinical neurophysiological effects of lead: a review on peripheral, central, and autonomic nervous system effects in lead workers. Am J Ind Med 37(2):193–204

    CAS  Google Scholar 

  • Barroso-Moguel R, Villeda-Hernández J, Méndez-Armenta M, Ríos C, Monroy-Noyola A (1994) Combined D-penicillamine and Prussian blue as antidotal treatment against thallotoxicosis in rats: evaluation of cerebellar lesions. Toxicology 89:15–24

    CAS  Google Scholar 

  • Basun H, Lind B, Nordberg M, Nordström M, Björkstén KS, Winblad B (1994) Cadmium in blood in Alzheimer’s disease and non-demented subjects: results from a population-based study. Biometals 7:130–134

    CAS  Google Scholar 

  • Beijer K, Jernelov A (1986) Sources, transport and transformation of metals in the environment. In: Friberg L, Nordberg GF, Vouk VB (eds) Handbook on the toxicology of metals. General aspects, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Bellinger CD, Bellinger MA (2006) Childhood lead poisoning: the torturous path from science to policy. J Clin Invest 116:853–957

    CAS  Google Scholar 

  • Bellinger DC, Needleman HL (2003) Intelectual impairment and blood lead levels. N Engl J Med 349:500–502

    Google Scholar 

  • Benitez MA, Mendez-Armenta M, Montes S, Rembao D, Sanin LH, Rios C (2009) Mother-fetus transference of lead and cadmium in rats: involvement of metallothionein. Histol Histopathol 24:1523–1530

    CAS  Google Scholar 

  • Bennet C, Bettaiya R, Rajanna B, Baker L, Yallapragada PR, Brice JJ, White SL, Bokara KK (2007) Region specific increase in the antioxidant enzymes and lipid peroxidation products in the brain of rats exposed to lead. Free Radic Res 41(3):267–273

    CAS  Google Scholar 

  • Bridges CC, Zalups RK (2005) Molecular and ionic mimicry and the transport to toxic metals. Toxicol Appl Pharmacol 204:274–308

    CAS  Google Scholar 

  • Canfield RL, Kreher DA, Cornwell C, Henderson CR Jr (2003) Low level lead exposure executive functioning, and learning in early childhood. Child Neuropsychol 9(1):35–53

    Google Scholar 

  • Castro-Gonzalez MI, Méndez-Armenta M (2008) Heavy metals: implications associated to fish consumption. Environ Toxicol Pharmacol 26:263–271

    CAS  Google Scholar 

  • Chiodo LM, Jacobson SW, Jacobson JL (2004) Neurodevelopmental effects of postnatal lead exposure at very low levels. Neurotoxicol Teratol 26:359–371

    CAS  Google Scholar 

  • Costa LG, Aschner M, Vitalone A, Syversen T, Soldin OP (2004) Developmental neuropathology of environmental agents. Annu Rev Pharmacol 44:87–110

    CAS  Google Scholar 

  • Cupit M, Larsson O, de Meeûs C, Eduljee GH, Hutton M (2002) Assessment and management of risks arising from exposure to cadmium in fertilisers-II. Sci Tot Environ 291:189–206

    CAS  Google Scholar 

  • Cvjetko P, Cvjetko I, Pavlica M (2010) Thallium toxicity in humans. Arh Hig Rada Toksikol 61:111–119

    CAS  Google Scholar 

  • Dabrowska-Bouta B, Sulkowski G, Bartosz G, Walski M, Rafalowska U (1999) Chronic lead intoxication affects the myelin membrane status in the central nervous system (CNS) of adult rats. J Mol Neurosci 13:127–139

    CAS  Google Scholar 

  • Dabrowska-Bouta B, Struzyñska L, Walski M, Rafalowska U (2008) Myelin glycoproteins targeted by lead in the rodent model of prolonged exposure. Food Chem Toxicol 46:961–966

    CAS  Google Scholar 

  • Davis LE, Standefer JC, Kornfeld M, Abercrombie DM, Butler C (1981) Acute thallium poisoning: toxicological and morphological studies of the nervous system. Ann Neurol 10:38–44

    CAS  Google Scholar 

  • Dorman DC (2000) An integrative approach to neurotoxicology. Toxicol Pathol 28(1):37–42

    CAS  Google Scholar 

  • Dorta DJ, Leite S, DeMarco KC, Rodrigues T, Mingatto FE, Uyemura SA, Santos AC, Curti C (2003) A proposed sequence of events for cadmium-induced mitochondrial impairment. J Inorg Biochem 97:251–257

    CAS  Google Scholar 

  • Dribben WH, Creeley CE, Farber N (2011) Low-level lead exposure triggers neuronal apoptosis in the developing mouse brain. Neurotoxicol Teratol 33:473–480

    CAS  Google Scholar 

  • El-Demerdash FM, Yousef MI, Kedwany FS, Baghdadi HH (2004) Cadmium induced changes in lipid peroxidation, blood hematology, biochemical parameters and semen quality of male rats: protective role of vitamin E and beta-carotene. Food Chem Toxicol 42:1563–1571

    CAS  Google Scholar 

  • El-Sokkary GH, Awadalla AE (2011) The protective role of vitamin c against cerebral and pulmonary damage induced by cadmium chloride in male adult albino rats. Open Neuroendocrinol J 4:1–8

    CAS  Google Scholar 

  • Environmental Protection Agency (2006) U.S., Air quality criteria for lead Volume I and II of II. National Center for Environmental Assessment-RTO Office, Research Triangle Park

    Google Scholar 

  • Esquifino AI, Seara R, Fernández-Rey E, Lafuente A (2001) Alternate cadmium exposure differentially affects the content of gamma-aminobutyric acid (GABA) and taurine within the hypothalamus, median eminence, striatum and prefrontal. Arch Toxicol 75:127–133

    CAS  Google Scholar 

  • Fern R, Black JA, Ransom BR, Waxman SG (1996) Cd+−induced injury in CNS white matter. J Neurophysiol 76:3264–3273

    CAS  Google Scholar 

  • Flora SJS (2009) Metal poisoning: threat and management. Al Ameen J Med Sci 2:4–26

    CAS  Google Scholar 

  • Flora SJS, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress and its possible reversal by chelation therapy. Indian J Med Res 128:501–523

    CAS  Google Scholar 

  • Franco R, Sánchez-Olea R, Reyes-Reyes EM, Panayiotidis MI (2009) Environmental toxicity, oxidative stress and apoptosis: ménage à trios. Mutat Res 674:3–22

    CAS  Google Scholar 

  • Gabbiani G, Baic D, Deziel C (1967a) Toxicity of cadmium for the central nervous system. Exp Neurol 18:154–160

    CAS  Google Scholar 

  • Gabbiani G, Gregory A, Basic D (1967b) Cadmium-induced selective lesions of sensory ganglia. J Neuropath Exp Neurol 26:498–501

    CAS  Google Scholar 

  • Galván-Arzate S, Ríos C (1994) Thallium distribution in organs and brain regions of developing rats. Toxicology 90:63–69

    Google Scholar 

  • Galván-Arzate S, Santamaria A (1998) Thallium toxicity. Toxicol Lett 99:1–13

    Google Scholar 

  • Galván-Arzate S, Martínez A, Medina E, Santamaría A, Rios C (2000) Subchronic administration of sublethal doses of thallium to rats: effects on distribution and lipid peroxidation in brain regions. Toxicol Lett 116:37–43

    Google Scholar 

  • Galván-Arzate S, Pedraza-Chaverrí J, Medina-Campos ON, Maldonado PD, Vázquez-Román B, Ríos C, Santamaria A (2005) Delayed effects of thallium in the rat brain: regional changes in lipid peroxidation and behavioral markers, but moderate alterations in antioxidants, after a single administration. Food Chem Toxicol 43:1037–1045

    Google Scholar 

  • Gamo M, Ono K, Nakanishi J (2006) Meta-analysis for deriving age- and gender-specific dose–response relationships between urinary cadmium concentration and ß2-microglabulinuria under environmental exposure. Environ Res 101:104–112

    CAS  Google Scholar 

  • Gao S, Jin Y, Unverzagt FW, Ma F, Hall KS, Murrell JR, Cheng Y, JShen J, Ying B, Ji R, Matesan J, Liang C, Hendrie HC (2008) Trace element levels and cognitive function in rural elderly Chinese. J Gerontol A Biol Sci Med Sci 63:635–641

    Google Scholar 

  • García-Arenas G, Ramírez-Amaya V, Balderas I, Sandoval J, Escobar ML, Ríos C, Bermúdez-Rattoni F (2004) Cognitive deficits in adult rats by lead intoxication are related with regional specific inhibition of cNOS. Behav Brain Res 149(1):49–59

    Google Scholar 

  • Gobe G, Crane D (2010) Mitochondria, reactive oxygen species and cadmium toxicity in the kidney. Toxicol Lett 198:49–55

    CAS  Google Scholar 

  • Goyer RA, Clarkson TW (2001) Toxic effects of metals. In: Klaassen CD (ed) Casarett and Doull’s, toxicology: the basic science of poisons, 6th edn. McGraw-Hill, New York

    Google Scholar 

  • Gutierrez-Reyes EY, Albores A, Ríos C (1998) Increase of striatal dopamine release by cadmium in nursing rats and its prevention by dexamethasone induced metallothionein. Toxicology 131:145–154

    CAS  Google Scholar 

  • Gwalteney-Brant SM (2002) Heavy metals. In: Haschek WM, Rosseaux CG, Wallig AM (eds) Handbook of toxicologic pathology. Academic, New York

    Google Scholar 

  • Hanzel CE, Verstraeten SV (2006) Thallium induces hydrogen peroxide generation by impairing mitochondrial function. Toxicol Appl Pharmacol 216(3):485–492

    CAS  Google Scholar 

  • Hanzel CE, Villaverde SV, Verstraeten SV (2005) Glutathione metabolism is impaired in vitro by thallium (III) hydroxide. Toxicology 207:501–510

    CAS  Google Scholar 

  • Hart RP, Rose CS, Hamer RM (1989) Neuropsycological effect of occupational exposure to cadmium. J Clin Exp Neuropsychol 11:933–943

    CAS  Google Scholar 

  • Hasan M, Ali FS (1981) Effects of thallium, nickel and cobalt administration on the lipid peroxidation in different regions of the rat brain. Toxicol Appl Pharmacol 57:8–13

    CAS  Google Scholar 

  • Hidalgo J, Aschner A, Zatta P, Vasák M (2001) Roles of the metallothionein family of proteins in the central nervous system. Brain Res Bull 55:133–145

    CAS  Google Scholar 

  • Hoffman RS (2000) Thallium poisoning during pregnancy; a case report and comprehensive literature review. J Toxicol Clin Toxicol 38:767–775

    CAS  Google Scholar 

  • Ikediobi CO, Badisa VL, Ayuk-Takem LT, Latinwo LM, West J (2004) Response of antioxidant enzymes and redox metabolites to cadmium-induced oxidative stress in CRL-1439 normal rat liver cells. Int J Mol Med 14:87–92

    CAS  Google Scholar 

  • International Agency for Research on Cancer (IARC) (1993) Cancer monographs on the evaluation of the carcinogenic risks to humans, vol 58. IARC Scientific Pub, Lyon

    Google Scholar 

  • Jarup L (2003) Hazards of heavy metal contamination. Brit Med Bull 68:167–182

    Google Scholar 

  • Jarup L, Berglund M, Elinder CG, Nordberg G, Vahter M (1998) Health effects of cadmium exposure–a review of the literature and a risk estimate. Scand J Work Environ Health 24(S1):1–51

    Google Scholar 

  • Jin T, Wu X, Tang Y, Nordberg M, Bernard A, Ye T, Kong Q, Lundström NG, Nordberg GF (2004) Environmental epidemiological study and estimation of benchmark dose for renal dysfunction in a cadmium-polluted area in China. BioMetals 17:525–530

    CAS  Google Scholar 

  • John Peter AL, Viraraghavan T (2005) Thallium: a review of public health and environmental concerns. Environ Int 31:493–501

    Google Scholar 

  • Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87

    CAS  Google Scholar 

  • Jones RL, Homa DM, Meyer PA, Brody DJ, Caldwell KL, Pirkle JL, Brown MJ (2009) Trends in blood lead levels and blood lead testing among US children aged 1 to 5 years, 1988–2004. Pediatrics 123:e376–e385

    Google Scholar 

  • Joseph P (2009) Mechanisms of cadmium carcinogenesis. Toxicol Appl Pharmacol 238:272–279

    CAS  Google Scholar 

  • Kakkar P, Jaffery NF (2005) Biological markers for metal toxicity. Environ Toxicol Pharmacol 19:335–349

    CAS  Google Scholar 

  • Kamel MM, El Razek AAH (2011) Perinatal exposure to cadmium affects neurobehavioural development and anxiety – like behaviour in rat offspring. Life Sci J 8:529–536

    Google Scholar 

  • Kaoud HA, Kamel MM, Abdel-Razek AH, Kamel GM, Ahmed KA (2010) Neurobehavioural, neurochemical and neuromorphological effects of cadmium in male rats. J Am Sci 6:189–202

    Google Scholar 

  • Kazantzis G (2000) Thallium in the environment and health effects. Environ Geochem Health 22:275–280

    CAS  Google Scholar 

  • Klaassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267–294

    CAS  Google Scholar 

  • Klaassen CD, Liu J, Diwan BA (2009) Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 238(3):215–220

    CAS  Google Scholar 

  • Kordas K, Canfield RL, López P, Rosado JL, Vargas GG, Cebrián ME, Rico JA, Ronquillo D, Stoltzfus RJ (2006) Deficits in cognitive function and achievement in Mexican first-graders with low blood lead concentrations. Environ Res 100:371–386

    CAS  Google Scholar 

  • Lafond J, Hamel A, Tasker L, Vaillancourt C, Mergler D (2004) Low environmental contamination by lead in pregnant women: effect on calcium transfer in human placental syncytiotrophoblasts. J Toxicol Environ Health A67(1069):1079

    Google Scholar 

  • Lafuente A, Fernández-Rey E, Seara R, Pérez-Lorenzo M, Esquifino AI (2001) Alternate cadmium exposure differentially effects amino acid metabolism within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats. Neurochem Int 39:187–192

    CAS  Google Scholar 

  • Lafuente A, Gonzalez-Carracedo A, Romero A, Esquifito AI (2003) Effect of cadmium on 24-h variations in hypothalamic dopamine and serotonin metabolism in adult male rats. Exp Brain Res 149:200–206

    CAS  Google Scholar 

  • Lanphear BP, Dietrich K, Auinger P, Cox C (2000) Cognitive deficits associated with blood lead concentrations <10 microg/dL in US children and adolescents. Public Health Rep 115:521–529

    CAS  Google Scholar 

  • Leonard A, Gerberr GB (1997) Mutagenicity, carcinogenicity and teratogenicity of thallium compounds. Mutat Res 387:47–53

    Google Scholar 

  • Leverrier P, Montigny C, Garrigos M, Champeil P (2007) Metal binding to ligands: cadmium complexes with glutathione revisited. Anal Biochem 371(215):228

    Google Scholar 

  • Limos CL, Ohnishi A, Suzuki N, Kojima N, Yoshimura T, Goto I, Kuroiwa Y (1982) Axonal degeneration and focal muscle fiber necrosis in human thallotoxicosis: histopathological studies of nerve and muscle. Muscle Nerve 5:598–706

    Google Scholar 

  • Lindeque JZ, Levanets O, Louw R, van der Westhuizen FH (2010) The involvement of metallothioneins in mitochondrial function and disease. Curr Protein Peptide Sci 11:292–309

    CAS  Google Scholar 

  • Liu J, Liu Y, Habeebu SS, Klaassen CD (1998) Susceptibility of MT-null mice to chronic CdCl2-induced nephrotoxicity indicated that renal injury is not mediated by the CdMT complex. Toxicol Sci 46:197–203

    CAS  Google Scholar 

  • Liu J, Goyer R, Waalkes MP (2007) Toxic effects of metals. In: Klaassen CD (ed) Casarett and Doull’s toxicology the basic science of poisons, 7th edn. McGraw Hill, New York

    Google Scholar 

  • López E, Arce C, Oset-Gasque MJ, Cañadas S, González MP (2006) Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic Biol Med 40:940–951

    Google Scholar 

  • Manca D, Ricard AC, Trotter B, Chevalier G (1991) Studies for lipid peroxidation in rat tissues following administration of low and moderate doses of cadmium chloride. Toxicology 67:303–323

    CAS  Google Scholar 

  • Mazumdar M, Bellinger CD, Gregas M, Abanilla K, Bacic J, Needleman HL (2011) Low-level environmental lead exposure in childhood and adult intellectual function: a follow-up study. Environ Health 10:24–30

    CAS  Google Scholar 

  • Méndez-Armenta M, Ríos C (2007) Cadmium neurotoxicity. Environ Toxicol Pharmacol 23:350–358

    Google Scholar 

  • Méndez-Armenta M, Barroso-Moguel R, Villeda-Hernández J, Nava-Ruiz C, Ríos C (2001) Histopathological alterations in the brain regions of rats after perinatal combined treatment with cadmium and dexamethasone. Toxicology 161:189–199

    Google Scholar 

  • Méndez-Armenta M, Villeda-Hernández J, Barroso-Moguel R, Nava-Ruiz C, Jiménez-Capdeville ME, Rios C (2003) Brain regional lipid peroxidation and metallothionein levels of developing rats exposed to cadmium and dexamethasone. Toxicol Lett 144:151–157

    Google Scholar 

  • Minami A, Takeda A, Nishibaba D, Takefuta S, Oku N (2001) Cadmium toxicity in synaptic neurotransmission in the brain. Brain Res 894:336–339

    CAS  Google Scholar 

  • Moneim AES, Dkhil MA, Al-Quraishy S (2011) Effects of flaxseed oil on lead acetate-induced neurotoxicity in rats. Biol Trace Elem Res 144:904–913

    Google Scholar 

  • Moreira EG, Rosa GJ, Barros SB, Vassilieff VS, Vassilieff I (2001) Antioxidant defense in rat brain regions after developmental lead exposure. Toxicology 169(2):145–151

    CAS  Google Scholar 

  • Mulkey JP, Oehme FW (1993) A review of thallium toxicity. Vet Hum Toxicol 35:445–453

    CAS  Google Scholar 

  • Nava-Ruiz C, Méndez-Armenta M, Rios C (2012) Lead neurotoxicity: effects on brain nitric oxide synthase. J Mol Hist 43:553–563. doi:10.1007/s10735-012-9414-2

    CAS  Google Scholar 

  • Neala PA, Worley PF, Guilarte TR (2011) Lead exposure during synaptogenesis alters NMDA receptor targeting via NMDA receptor inhibition. Neurotoxicology 32:281–289

    Google Scholar 

  • Nehru B, Kanwar SS (2004) N-acetylcysteine exposure on lead induced lipid peroxidative damage and oxidative defense system in brain regions of rats. Biol Trace Elem Res 101:257–264

    CAS  Google Scholar 

  • Nordberg FG (2004) Cadmium and health in the 21st century-historical remarks and trends for the future. BioMetals 17:485–489

    CAS  Google Scholar 

  • Nriagu JO (1998) Thallium in the environment, vol 29, Wiley series in advances in environmental science and technology. Wiley, New York

    Google Scholar 

  • Omarova A, Phillips CJC (2007) A meta-analysis of literature data relating to the relationships between cadmium intake and toxicity indicators in humans. Environ Res 103:432–440

    CAS  Google Scholar 

  • Osman K, Akesson A, Berglund M, Bremme K, Schütz A, Ask K, Vahter M (2000) Toxic and essential elements in placentas of Swedish women. Clin Biochem 33:131–138

    CAS  Google Scholar 

  • Ozden TA, Gökçay G, Ertem HV, Süoğlu OD, Kiliç A, Sökücü S, Saner G (2007) Elevated hair levels of cadmium and lead in school children exposed to smoking and in highways near schools. Clin Biochem 40:52–56

    Google Scholar 

  • Papanikolaou NC, Hatzidaki EG, Belivanis S, Tzanakakis GN, Tsatsakis AM (2005) Lead toxicity update. A brief review. Med Sci Monit 11:329–336

    Google Scholar 

  • Papp A, Nagymajtényi L, Dési I (2003) A study on electrophysiological effects of subchronic cadmium treatment in rats. Environ Toxicol Pharmacol 13:181–186

    CAS  Google Scholar 

  • Patrick L (2003) Toxic metals and antioxidants: part II. The role of antioxidants in arsenic and cadmium toxicity. Altern Med Rev 8:106–128

    Google Scholar 

  • Patrick L (2006) Lead toxicity part II. The role of free radical damage and the use of antioxidants in the pathology and treatment of lead. Altern Med Rev 11:114–127

    Google Scholar 

  • Provias JP, Ackerley CA, Smith C, Becker LE (1994) Cadmium encephalopathy: a report with elemental analysis and pathological findings. Acta Neuropathol Berl 88:583–586

    CAS  Google Scholar 

  • Puga MLC, Verstraeten VS (2008) Thallium (III)-mediated changes in membrane physical properties and lipid oxidation affect cardiolipin–cytochrome c interactions. Biochem Biophys Act 1778:2157–2164

    Google Scholar 

  • Ramsden D (2002) Thallium. In: Waring RH, Steventon GB, Mitchell SC (eds) Molecules of death. Imperial College Press, London

    Google Scholar 

  • Raskin I, Nanda-Kumar PBA, Dushenkov S, David E (1994) Bioconcentration of heavy metals by plants. Salt Curr Opin Biotechnol 5:285–290

    CAS  Google Scholar 

  • Repetto G, Del Peso A, Repetto M (1998) Human thallium toxicity. In: Nriagu J (ed) Thallium in the environment, Advances in environmental science and technology. Wiley, New York, pp 167–199

    Google Scholar 

  • Rice DC (1993) Lead-induced changes in learning: evidence for behavioral mechanisms from experimental animal studies. Neurotoxicol 14:167–178

    CAS  Google Scholar 

  • Saldivar RL, Luna M, Reyes E, Soto R, Fortul T (1991) Cadmium determination in Mexican-produced tobacco. Environ Res 55:91–96

    CAS  Google Scholar 

  • Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly EBP, Williams JD, Moore MR (2003) A global perspective on cadmium pollution and toxicity in non occupationally exposed population. Toxicol Lett 137:65–83

    CAS  Google Scholar 

  • Sato M, Kondoh M (2002) Recent studies on metallothionein: protection against of heavy metals and oxygen free radicals. Tohoku J Exp Med 196:9–22

    CAS  Google Scholar 

  • Schwartz GG, Reis IM (2000) Is cadmium a cause of human pancreatic cancer? Cancer Epidemiol Biomark Prev 9:139–145

    CAS  Google Scholar 

  • Schwerdtle T, Ebert F, Thuy C, Richter C, Mullenders LH, Hartwig A (2010) Genotoxicity of soluble and particulate cadmium compounds: impact on oxidative DNA damage and nucleotide excision repair. Chem Res Toxicol 23:432–442

    CAS  Google Scholar 

  • Selvin-Testa A, Capani F, Loidl CF, Pecci-Saavedra J (1997) The nitric oxide synthase expression of rat cortical and hippocampal neurons changes after early lead exposure. Neurosci Lett 236:75–78

    CAS  Google Scholar 

  • Shagirtha K, Muthumani M, Prabu M (2011) Melatonin abrogates cadmium induced oxidative stress related neurotoxicity in rats. Eur Rev Med Pharmacol Sci 15:1039–1050

    CAS  Google Scholar 

  • Sharifi AM, Baniasadi S, Jorjani M, Rahimi F, Bakhshayesh M (2002) Investigation of acute lead poisoning on apoptosis in rat hippocampus in vivo. Neurosci Lett 329:45–48

    CAS  Google Scholar 

  • Soltaninejad K, Kebriaeezadeh A, Minaiee B, Ostad SN, Hosseini R, Azizi E, Abdollahi M (2003) Biochemical and ultrastructural evidences for toxicity of lead through free radicals in rat brain. Hum Exp Toxicol 22:417–423

    CAS  Google Scholar 

  • Stohs SJ, Bagchi D, Bagchi M (1997) Toxicity of trace elements in tobacco smoke. Inhal Toxicol 9:867–890

    CAS  Google Scholar 

  • Stohs SJ, Bagchi D, Hassoun E, Bagchi M (2001) Oxidative mechanisms in the toxicity of chromium and cadmium ions. J Environ Pathol Toxicol Oncol 20:77–88

    CAS  Google Scholar 

  • Struzyñska L, Bubko I, Walski M, Rafalowska U (2001) Astroglial reaction during the early phase of acute lead toxicity in the adult rat brain. Toxicology 165:121–131

    Google Scholar 

  • Suwazono Y, Sand S, Vahter M, Filipsson AF, Skerfving S, Lidfeldt J, Akesson A (2006) Benchmark dose for cadmium-induced renal effects in humans. Environ Health Perspect 114:1072–1076

    CAS  Google Scholar 

  • Tabandeh H, Crowston JG, Thompson GM (1994) Features of thallium poisoning. Am J Ophthalmol 117:243–245

    CAS  Google Scholar 

  • Takebayashi S, Jimi S, Segawa M, Kiyoshi Y (2000) Cadmium induces osteomalacia mediated by proximal tubular atrophy and disturbances of phosphate reabsorption. A study of 11 autopsies. Pathol Res Pract 196:653–663

    CAS  Google Scholar 

  • Thatcher RW, Lester ML, McAlaster R, Horst R (1982) Effects of low levels of cadmium and lead on cognitive functioning in children. Arch Environ Health 37:159–166

    CAS  Google Scholar 

  • Thévenod F (2009) Cadmium and cellular signaling cascades: to be or not to be? Toxicol Appl Pharmacol 238:221–239

    Google Scholar 

  • Tiffany-Castiglioni E, Qian Y (2001) Astroglia as metal depots: molecular mechanisms for metal accumulation, storage and release. Neurotoxicology 22:577–592

    CAS  Google Scholar 

  • Toscano CD, Guilarte RT (2005) Lead neurotoxicity: from exposure to molecular effects. Brain Res Rev 49:529–554

    CAS  Google Scholar 

  • Tromme I, van Neste D, Dobbelaere F, Bouffioux B, Courtin C, Dugernier T (1998) Skin signs in the diagnosis of thallium poisoning. J Dermatol 138:321–325

    CAS  Google Scholar 

  • Tsai YT, Huang C, Kuo HC, Wang HM, Shen WS, Shih TS, Chu NS (2006) Central nervous system effects in acute thallium poisoning. NeuroToxicol 27:291–295

    CAS  Google Scholar 

  • U.S. Geological Survey (USGS) (2008) Cadmium. Mineral commodity summaries. U.S. Geological Survey

    Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    CAS  Google Scholar 

  • Van den Berg KJ, Lammers JH, Hoogendijk EM, Kulig BM (1996) Changes in regional brain GFAP levels and behavioral functioning following subchronic lead acetate exposure in adult rats. Neurotoxicology 17:725–734

    Google Scholar 

  • Van Kesteren RG (1994) Thallium. In: Vinken DJ, Bruyn GW, de Wolff FA (eds) Handbook of clinical neurology, vol 64, Intoxication of the nervous system. Elsevier North-Holland Biochemical Press, Amsterdam

    Google Scholar 

  • Verina T, Rohde CA, Guilarte TR (2007) Environmental Pb2+ exposure during early life alters granule cell neurogenesis and morphology in the hippocampus of young adult rats. Neuroscience 145:1037–1047

    CAS  Google Scholar 

  • Viaene MK, Roels HA, Leenders J, De Groof M, Swerts LJ, Lison D, Masschelein R (1999) Cadmium: a possible etiological factor in peripheral polyneuropathy. Neurotoxicology 20:7–16

    CAS  Google Scholar 

  • Viaene MK, Masschelein R, Leenders J, De Groof M, Swerts LJ, Roels HA (2000) Neurobehavioural effects of occupational exposure to cadmium: a cross sectional epidemiological study. Occup Environ Med 57:19–27

    CAS  Google Scholar 

  • Villeda-Hernández J, Barroso-Moguel R, Méndez-Armenta M, Nava-Ruíz C, Huerta-Romero R, Rios C (2001) Enhanced brain regional lipid peroxidation in developing rats exposed to low level lead acetate. Brain Res Bull 55:247–251

    Google Scholar 

  • Villeda-Hernández J, Méndez-Armenta M, Barroso-Moguel R, Trejo-Solís MC, Guevara J, Ríos C (2006) Morphometric analysis of brain lesions in rat fetuses prenatally exposed to low level lead acetate: correlation with lipid peroxidation. Histol Histopathol 21:609–617

    Google Scholar 

  • Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117

    CAS  Google Scholar 

  • Wang S, Zhang J (2006) Blood lead levels in children, China. Environ Res 101:412–418

    CAS  Google Scholar 

  • Wang J, Wu J, Zhang Z (2006) Oxidative stress in mouse brain exposed to lead. Ann Occup Hyg 50:405–409

    CAS  Google Scholar 

  • White LD, Cory-Slechta DA, Gilbert ME, Tiffany-Castiglioni E, Zawia NH, Virgolini M, Rossi-George A, Lasley SM, Qian YC, Basha MR (2007) New and evolving concepts in the neurotoxicology of lead. Toxicol Appl Pharmacol 225(1):1–27

    CAS  Google Scholar 

  • Wong KL, Klaassen DC (1982) Neurotoxic effects of cadmium in young rats. Toxicol Appl Pharmacol 63:330–337

    CAS  Google Scholar 

  • Yang Y, Ma Y, Ni L, Zhao S, Li L, Zhang J, Fan M, Liang C, Cao J, Xu L (2003) Lead exposure through gestation only caused long-term learning/memory deficits in young adult offspring. Exp Neurol 184(1):489–495

    CAS  Google Scholar 

  • Zalups RK, Ahmad S (2003) Molecular handling of cadmium in transporting epithelia. Toxicol Appl Pharmacol 186:163–188

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisela Méndez-Armenta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nava-Ruíz, C., Méndez-Armenta, M. (2013). Cadmium, Lead, Thallium: Occurrence, Neurotoxicity and Histopathological Changes of the Nervous System. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Pollutant Diseases, Remediation and Recycling. Environmental Chemistry for a Sustainable World, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-02387-8_6

Download citation

Publish with us

Policies and ethics