Skip to main content

Multiclass Kernel Classifiers for Quality Estimation of Black Tea Using Electronic Nose

  • Chapter
  • First Online:
Sensing Technology: Current Status and Future Trends II

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 8))

Abstract

Electronic nose (e-nose) is a machine olfaction system that has shown significant possibilities as an improved alternative of human taster as olfactory perceptions vary from person to person. In contrast, electronic noses also detect smells with their sensors, but in addition describe those using electronic signals. An efficient e-nose system should analyze and recognize these electronic signals accurately. For this it requires a robust pattern classifier that can perform well on unseen data. This research work shows the efficient prediction of black tea quality by means of modern kernel classifiers using the e-nose signatures. As kernel classifiers, this work investigates the potential of state of the art support vector machine (SVM) classifier and very recently developed nonparallel plane proximal classifier (NPPC) and vector-valued regularized kernel function approximation (VVRKFA) technique of multiclass data classification to build taster-specific computational models. Experimental results show that VVRKFA and one-versus-rest (OVR) SVM models offer high accuracies to predict the considerable variation in tea quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Dutta, E.L. Hines, J.W. Gardner, K.R. Kashwan, M. Bhuyan, Tea quality prediction using a tin oxide-based electronic nose: An artificial intelligence approach. Sens. Actuators B: Chem. 94(2), 228–237 (2003)

    Article  Google Scholar 

  2. M. Pardo, G. Sberveglieri, Coffee analysis with an electronic nose. IEEE Trans. Instrum. Meas. 51(6), 1334–1339 (2002)

    Article  Google Scholar 

  3. D.D.H. Boothe, J.W. Arnold, Electronic nose analysis of volatile compounds from poultry meat samples, fresh and after refrigerated storage. J. Sc. Food Agric. 82(3), 315–322 (2002)

    Article  Google Scholar 

  4. J. Lozano, J.P. Santos, M. Aleixandre, I. Sayago, J. Gutierrez, M.C. Horrillo, Identification of typical wine aromas by means of an electronic nose. IEEE Sensor J. 6(1), 173–178 (2006)

    Article  Google Scholar 

  5. M. O’Connel, G. Valdora, G. Peltzer, R. Martin Negri, A practical approach for fish freshness determinations using a portable electronic nose. Sens. Actuators, B: Chem. 80(2), 149–154 (2001).

    Google Scholar 

  6. N. Bhattacharyya, R. Bandyopadhyay, M. Bhuyan, B. Tudu, D. Ghosh, A. Jana, Electronic nose for black tea classification and correlation of measurements with “Tea Taster” marks. IEEE Trans. Instrum. Meas. 57(7), 1313–1321 (2008)

    Article  Google Scholar 

  7. B. Tudu, A. Jana, A. Metla, D. Ghosh, N. Bhattacharyya, R. Bandopadhyay, Electronic nose for black tea quality evaluation by an incremental RBF network. Sens. Actuat. B: Chem. 138, 90–95 (2009)

    Article  Google Scholar 

  8. T. Hastie, R. Tibshirani and J. Friedman, The Elemetns of Statistical Learning: Data mining, Inference, Prediction, 2nd edn. (Springer, New York, 2009)

    Google Scholar 

  9. R. O. Duda, P. E. Hart and D. J. Stork, Pattern Classification, 2nd edn. (John Wiley & Sons, Inc., Singapore, 2006)

    Google Scholar 

  10. J. R. Quinlan, C4.5: Programs for Machine Learning (Morgan Kaufmann Inc., 1993)

    Google Scholar 

  11. L. Breiman, J. Friedman, C.J. Stone, R.A. Olshen, Classification and Regression Trees (Chapman and Hall, New York, 1993)

    Google Scholar 

  12. E.L. Allwein, R.E. Schapire, Y. Singer, Reducing multiclass to binary: a unifying approach for margin classifiers. J. Mach. Learn. Res. 1, 113–141 (2000)

    MathSciNet  Google Scholar 

  13. L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L. Jackel, Y. LeCun, U. Muller, E. Sackinger, P. Simard, V. Vapnik, Comparison of classifier methods: A case study in hand writing digit recognition. in Proceedings of the International Conference Pattern Recognition, 1994, pp. 77–87

    Google Scholar 

  14. U. Kreßel, Pairwise Classification and Support Vector Machines, in Advances in Kernel Methods-Support Vector Learning, ed. by B. Schölkopf, C. J. C. Burges, A. J. Smola (MIT Press, Cambridge, 1999), pp. 255–268

    Google Scholar 

  15. J.C. Platt, N. Cristianini, J. Shawe-Taylor, Large margin DAG’s for multiclass classification. Adv. Neu. Inform. Process. Syst. 12, 547–553 (2000)

    Google Scholar 

  16. K. Crammer and Y. Singer, On the learn ability and design of output codes for multiclass problems. Mach. Learning 47(2–3), 201–233 (2002)

    Google Scholar 

  17. V.N. Vapnik, The nature of statistical learning theory (John Wiley & Sons, Inc., New York, 1998)

    Google Scholar 

  18. N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines, (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  19. C.-W. Hsu, C.-J. Lin, A comparison of methods for multiclass support vector machines. IEEE Trans. N. Nets. 13(2), 415–425 (2002)

    Google Scholar 

  20. S. Ghorai, A. Mukherjee, S. Sengupta, P. K. Dutta, Multicategory Cancer Classification from Gene Expression Data by Multiclass NPPC Ensemble. in IEEE International Conference on Systems in Medicine and Biology, (IIT-Kharagpur, 2010)

    Google Scholar 

  21. S. Ghorai, A. Mukherjee, P.K. Dutta, Nonparallel plane proximal classifier. Sign. Process. 89(4), 510–522 (2009)

    Article  MATH  Google Scholar 

  22. S. Ghorai, S.J. Hossain, A. Mukherjee, P.K. Dutta, Newton method for nonparallel plane proximal classifier with unity norm hyperplanes. Sign. Proces. 90(1), 93–104 (2010)

    Article  MATH  Google Scholar 

  23. S. Ghorai, A. Mukherjee, P.K. Dutta, Discriminant analysis for fast multiclass data classification through regularized kernel function approximation. IEEE Trans. Neu. Netw 21(6), 1020–1029 (2010)

    Article  Google Scholar 

  24. S. Ghorai, A. Mukherjee, P.K. Dutta, Advances in Proximal Kernel Classifiers (LAP LAMBERT Academic Publishing, Germany, 2012)

    Google Scholar 

  25. M. Pardo, G. Sberveglieri, Classification of electronic nose data with Support vector machines. Sens. Actuat. B: Chem. 107, 730–737 (2005)

    Article  Google Scholar 

  26. M. Gaudioso, W. Khalaf, On the Use of the SVM Approach in Analyzing an Electronic Nose, in Proceedings of the 7th international Conference on Hybrid Intelligent Systems (Kaiserslautern, 2007), pp. 42–46

    Google Scholar 

  27. L. Xie, X. Wang, Gas quantitative analysis with support vector machine. in Proceedings of Chinese Control and Decision Conference, (Jinhua, 2009), pp. 2362–2366

    Google Scholar 

  28. W. Khalaf, C.P.M. Gaudioso, Least square regression method for estimating gas concentration in an electronic nose system. Sensors 9(3), 1678–1691 (2009)

    Article  Google Scholar 

  29. X. Wang, J. Chang, K. Wang, M. Ye, Least square support vector machines in combination with principal component analysis for electronic nose data classification, in Proceedings of 2nd International Symposium on Information Science and Engineering (Shanghai, China, 2009), pp. 348–352

    Google Scholar 

  30. E. Phaisangittisagul, Improving sensor subset selection of machine olfaction using multiclass SVM, in Proceedings of 3rd International Conference on Knowledge Discovery and Data Mining (Bangkok, 2010), pp. 28–31

    Google Scholar 

  31. E. Phaisangittisagul, Approximating sensors’ responses of odor mixture on machine olfaction, in Proceedings of International Conference on Artificial Intelligence and Computational Intelligence, vol. 2 (2009), pp. 60–64

    Google Scholar 

  32. C. Cortes, V.N. Vapnik, Support Vector Networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  33. J. Friedman, Another approach to polychotomous classification, Department of Statistics, Stanford University Stanford, Technical Report. Available at: http://www-stat.stanford.edu/reports/friedman/poly.ps.Z, 1996

  34. C. C. Chang and C. J. Lin, LIBSVM: A library for support vector machines. Technical Reort, 2001. Available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm

  35. T. M. Mitchell, Machine Learning, (The McGraw-Hill Companies, Inc., Singapore, 1997), p 148 (Chapter 5)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saha, P., Ghorai, S., Tudu, B., Bandyopadhyay, R., Bhattacharyya, N. (2014). Multiclass Kernel Classifiers for Quality Estimation of Black Tea Using Electronic Nose. In: Mason, A., Mukhopadhyay, S., Jayasundera, K., Bhattacharyya, N. (eds) Sensing Technology: Current Status and Future Trends II. Smart Sensors, Measurement and Instrumentation, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-02315-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02315-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02314-4

  • Online ISBN: 978-3-319-02315-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics