Skip to main content

High Frequency Surface Acoustic Wave (SAW) Device for Toxic Vapor Detection: Prospects and Challenges

  • Chapter
  • First Online:
Sensing Technology: Current Status and Future Trends II

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 8))

Abstract

Surface Acoustic Wave (SAW) based device is very much suitable for detecting very small quantity of vapors of explosive chemicals. There are three possible kinds of SAW devices which can be used for sensor fabrication such as delay lines, resonator and filter. Choice among them depends on individual preferences and sometimes it is the matter of chance. In this report, a high frequency 70 MHz SAW device has been developed for the detection of chemical warfare (CW) agents. SAW device is fabricated on ST-quartz substrate as it has negligible temperature coefficient at room temperature. The device is having dual oscillator circuit configuration for compensating the effects of temperature, humidity and pressure. Device is coated with suitable polymer and the applicability of the sensor for dimethyl methylphosphonate (DMMP) detection has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.A. Auld, Acoustic Fields and Waves in Solids, vol. 1 (Wiley, New York, 1973)

    Google Scholar 

  2. H. Matthews, Surface Wave Filters: Design, Construction, and Use (Wiley, New York, 1977)

    Google Scholar 

  3. A.A. Oliver (ed.), Acoustic Surface Waves (Springer-Verlag, Berlin, 1978)

    Google Scholar 

  4. C.K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications (Academic, San Diego, 1989)

    Google Scholar 

  5. D.S. Ballantine, R.M. White, S.J. Martin, A.J. Ricco, E.T. Zellers, G.C. Frye, H. Wohltjen, Acoustic Wave Sensors: Theory, Design, and Physico-Chemical Applications (Academic Press, San Diego, 1997)

    Google Scholar 

  6. D.P. Morgan, Surface-Wave Devices for Signal Processing (Elsevier, Amsterdam, 1985)

    Google Scholar 

  7. S. Datta, Surface Acoustic Wave Devices (Prentice-Hall, Englewood Cliffs, 1986)

    Google Scholar 

  8. E.A. Ash, Fundamentals of signal processing devices, topics in applied physics, in Acoustic Surface Waves, vol. 24, ed. by A.A. Oliner (Springer, New York, 1987), pp. 97–185

    Google Scholar 

  9. H. Wohltjen, Mechanism of operation and design considerations for surface acoustic wave device vapour sensors. Sens. Actuators 5, 307–325 (1984)

    Google Scholar 

  10. K. Hashimoto, Surface Acoustic Wave Devices in Telecommunications: Modeling and Simulation (Springer, New York, 2000)

    Book  Google Scholar 

  11. H. Wohltjen, R. Dessy, Surface acoustic wave probe for chemical analysis. Anal. Chem. 51, 1458–1475 (1979)

    Google Scholar 

  12. H. Wohltjen, Surface acoustic wave microsensors. in Proceedings 4th International Conference Sensors and Actuators, Transducers, vol. 87, pp. 471–477 (1987)

    Google Scholar 

  13. S.J. Martin, K.S. Schweizer, A.J. Ricco, T.E. Zipperian, Gas sensing with surface acoustic wave devices. in Proceedings 3rd International Conference Solid State, Sensors and Actuators, Transducers (1985), pp. 71–73

    Google Scholar 

  14. W.H. King, Piezoelectric sorption sensor. Anal. Chem. 36(9), 1735–1739 (1964)

    Article  Google Scholar 

  15. J.W. Grate, A. Snow, D.S. Ballantine, H. Wohltjen, M.H. Abraham, R.A. McGill, P. Sasson, Determination of partition coefficients from surface acoustic wave vapor sensor responses and correlation with gas-liquid chromatographic partition coefficients. Anal. Chem. 60, 869–875 (1988)

    Article  Google Scholar 

  16. E.T. Zellers, R.M. White, Selective surface-acoustic-wave styrene vapor sensor with regenerable reagent coating. in Proceedings 4th International Conference Solid State Sensor and Actuators, Transducers (1987), pp. 459–461

    Google Scholar 

  17. S.L. Rose-Pehrsson, J.W. Grate, D.S. Ballantine, P.C. Jurs, Detection of hazardous vapors including mixtures using pattern recognition analysis of responses from surface acoustic wave devices. Anal. Chem. 60, 2801–2811 (1988)

    Article  Google Scholar 

  18. D. Avramov, M. Rapp, A. Voigt, U. Stahl, M. Dirschka, Comparative studies on polymer coated SAW and STW resonators for chemical gas sensor applications. in Proceedings of the IEEEFCS (2000), pp. 58–65

    Google Scholar 

  19. J. Allan, B. Vrana, R. Greenwood, G.A. Mills, B. Roig, C. Gonzalez, A “toolbox” for biological and chemical monitoring requirements for the European Union’s water framework directive. Talanta 69, 302–322 (2006)

    Article  Google Scholar 

  20. F. Bender, K. Länge, A. Voigt, M. Rapp, Improvement of surface acoustic wave gas and biosensor response characteristics using a capacitive coupling technique. Anal. Chem. 76(13), 3837–3840 (2004)

    Article  Google Scholar 

  21. K.T. Tang, DJ. Yao, C.M. Yang, H.C. Hao, J.S. Chao, C.H. Li, P.S.Gu, A Portable Electronic Nose Based on Bio-Chemical Surface Acoustic Wave (SAW) Array with Multiplexed Oscillator and Readout Electronics. (ISOEN, Brescia, 2009)

    Google Scholar 

  22. T. Chuang, R.M. White, Sensors utilizing thin-membrane SAW oscillators. in Proceedings IEEE Ultrasonic, Symposium (1981) , pp. 159–162

    Google Scholar 

  23. S.Y. Liao, Microwave Circuit Analysis and Amplifier Design. (Prentice-Hall Inc, Upper Saddle River, 1986)

    Google Scholar 

  24. Data sheet INA- 12063 1.5 GHz Low Noise Self-Biased Transistor Amplifier, Agilent Technologies, www.semiconductor.agilent.com

  25. E.A. Gerber, A. Ballato, Precision Frequency Control Volume 2 Oscillators and Standards. (Academics Press Inc, New York, 1985)

    Google Scholar 

  26. M.W. Medley, Microwave and RF Circuits: Analysis, Synthesis and Design. (ArtHouse Inc, Norwood, 1993)

    Google Scholar 

  27. E. John, Fundamentals of RF Design. (Wiley, New York, 2001)

    Google Scholar 

  28. H.C. Hao, et al., Development of a portable electronic nose based on chemical surface acoustic wave array with multiplexed oscillator and readout electronics. Sensors and Actuators B: Chemical 146(2) 545–553 (2010)

    Google Scholar 

  29. G. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schechter und zur Mikrowägung. Zeitschrift für Physik 155(2), 206–222 (1959)

    Article  Google Scholar 

  30. D.L. Dermody et al., Interactions between organized, surface confined monolayers and vapor-phase probe molecules. II. Synthesis, characterization, and chemical sensitivity of self-assembled polydiacetylene/calix[n]arene bilayers. J. Am. Chern. Soc. 118, 11912–11917 (1996)

    Article  Google Scholar 

  31. H.C. Yang et al., Molecular interactions between organized, surface-confined monolayers and vapor-phase probe molecules. Langmuir 12, 726–735 (1996)

    Article  Google Scholar 

  32. C. Wang et al., A piezoelectric quartz crystal sensor array self-assembled calixarene bilayers for detection of volatile organic amine in gas. Talanta 57, 1181–1188 (2002)

    Article  Google Scholar 

  33. B. Drafts, Acoustic wave technology sensors. IEEE Trans. Microw. Theory Tech. 49, 795–802 (2001)

    Article  Google Scholar 

  34. T. Islam, U. Mittal, A. T. Nimal, M. U. Sharma, Surface acoustic wave (SAW) vapour sensor using 70 MHz SAW oscillatorIn proceedings Sixth International Conference on Sensing Technology (ICST-2012), pp. 112–114 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Islam, T., Mittal, U., Nimal, A.T., Sharma, M.U. (2014). High Frequency Surface Acoustic Wave (SAW) Device for Toxic Vapor Detection: Prospects and Challenges. In: Mason, A., Mukhopadhyay, S., Jayasundera, K., Bhattacharyya, N. (eds) Sensing Technology: Current Status and Future Trends II. Smart Sensors, Measurement and Instrumentation, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-02315-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02315-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02314-4

  • Online ISBN: 978-3-319-02315-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics