Skip to main content

Multiasset Derivatives and Joint Distributions of Asset Prices

  • Chapter
Inspired by Finance

Abstract

Several of multiasset derivatives like basket options or options on the weighted maximum of assets exhibit the property that their prices determine uniquely the underlying asset distribution. Related to that the question how to retrieve this distributions from the corresponding derivatives quotes will be discussed. On the contrary, the prices of exchange options do not uniquely determine the underlying distributions of asset prices and the extent of this non-uniqueness can be characterised. The discussion is related to a geometric interpretation of multiasset derivatives as support functions of convex sets. Following this, various symmetry properties for basket, maximum and exchange options are discussed alongside with their geometric interpretations and some decomposition results for more general payoff functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For markets with transaction costs we refer to [32] and the literature cited therein.

  2. 2.

    In relation to this it is stressed e.g. in [20] that a general analysis of financial markets should also consider situations where prices, at least for some instruments, can be negative.

  3. 3.

    Note that here we deal with max-zonoids and not the p -zonoids from Example 4.

References

  1. Bardos, C., Douady, R., Fursikov, A.: Static hedging of barrier options with a smile: an inverse problem. ESAIM Control Optim. Calc. Var. 8, 127–142 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barndorff-Nielsen, O.E., Shiryaev, A.N.: Change of Time and Change of Measure. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  3. Bates, D.S.: The skewness premium: option pricing under asymmetric processes. Adv. Futures Options Res. 9, 51–82 (1997)

    MathSciNet  Google Scholar 

  4. Baxter, M.: Hedging in financial markets. ASTIN Bull. 28, 5–16 (1998)

    Article  MATH  Google Scholar 

  5. Bowie, J., Carr, P.: Static simplicity. Risk 7, 45–49 (1994)

    Google Scholar 

  6. Breeden, D.T., Litzenberger, R.H.: Prices of state-contingent claims implicit in options prices. J. Bus. 51, 621–651 (1978)

    Article  Google Scholar 

  7. Carr, P., Chou, A.: Hedging complex barrier options. Working paper, NYU’s, Courant Institute and Enuvis Inc. (2002)

    Google Scholar 

  8. Carr, P., Ellis, K., Gupta, V.: Static hedging of exotic options. J. Finance 53, 1165–1190 (1998)

    Article  Google Scholar 

  9. Carr, P., Laurence, P.: Multi-asset stochastic local variance contracts. Math. Finance 21, 21–52 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carr, P., Lee, R.: Put-call symmetry: extensions and applications. Math. Finance 19, 523–560 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chan, T.: Pricing contingent claims on stocks driven by Lévy processes. Ann. Appl. Probab. 9, 504–528 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Choulli, T., Hurd, T.R.: The role of Hellinger processes in mathematical finance. Entropy 3, 150–161 (2001)

    Article  MATH  Google Scholar 

  13. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall/CRC, London (2004)

    MATH  Google Scholar 

  14. Cont, R., Tankov, P.: Non-parametric calibration of jump-diffusion option pricing models. J. Comput. Finance 7, 1–49 (2004)

    Google Scholar 

  15. Cont, R., Tankov, P.: Retrieving Lévy processes from option prices: regularization of an ill-posed inverse problem. SIAM J. Control Optim. 45, 1–25 (2007)

    Article  MathSciNet  Google Scholar 

  16. Crépey, S.: Calibration of the local volatility in a trinomial tree using Tikhonov regularization. Inverse Probl. 19, 91–127 (2003)

    Article  MATH  Google Scholar 

  17. d’Aspremont, A., El Ghaoui, L.: Static arbitrage bounds on basket option prices. Math. Program. 106, 467–489 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Delbaen, F., Schachermayer, W.: The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312, 215–250 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Delbaen, F., Schachermayer, W.: The Mathematics of Arbitrage. Springer, Berlin (2005)

    Google Scholar 

  21. Delbaen, F., Schachermayer, W.: The variance-optimal martingale measure for continuous processes. Bernoulli 2, 81–105 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Eberlein, E., Papapantoleon, A., Shiryaev, A.N.: On the duality principle in option pricing: semimartingale setting. Finance Stoch. 12, 265–292 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. El Karoui, N., Jeanblanc, M.: Options exotiques. Finance 20, 49–67 (1999)

    Google Scholar 

  24. El Karoui, N., Rouge, R.: Pricing via utility maximization and entropy. Math. Finance 10, 259–276 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Esche, F., Schweizer, M.: Minimal entropy preserves the Lévy property: how and why. Stoch. Process. Appl. 115, 299–337 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Föllmer, H., Schied, A.: Stochastic Finance. An Introduction in Discrete Time, 2nd edn. De Gruyter, Berlin (2004)

    Book  MATH  Google Scholar 

  27. Frittelli, M.: The minimal entropy martingale measure and the valuation problem in incomplete markets. Math. Finance 10, 39–52 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Goll, T., Rüschendorf, L.: Minimax and minimal distance martingale measures and their relationship to portfolio optimization. Finance Stoch. 5, 557–581 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Henkin, G.M., Shananin, A.A.: Bernstein theorems and Radon transform. Application to the theory of production functions. In: Gel’fand, I.M., Gindikin, S.G. (eds.) Mathematical Problems of Tomography, pp. 189–223. Amer. Math. Soc., Providence (1990)

    Google Scholar 

  30. Hüsler, J., Reiss, R.D.: Maxima of normal random vectors: between independence and complete dependence. Stat. Probab. Lett. 7, 283–286 (1989)

    Article  MATH  Google Scholar 

  31. Kabanov, Y.M.: On the FTAP of Kreps-Delbaen-Schachermayer. In: Kabanov, Y.M., Rozovskii, B.L., Shiryaev, A.N. (eds.) Statistics and Control of Random Processes. The Liptser Festschrift. Proceedings of Steklov Mathematical Institute Seminar, pp. 191–203. World Scientific, Singapore (1997)

    Google Scholar 

  32. Kabanov, Y.M., Safarian, M.: Markets with Transaction Costs. Mathematical Theory. Springer, Berlin (2009)

    MATH  Google Scholar 

  33. Kindermann, S., Mayer, P.A.: On the calibration of local jump-diffusion market models. Finance Stoch. 15, 685–724 (2011)

    Article  MathSciNet  Google Scholar 

  34. Koshevoy, G.A., Mosler, K.: Lift zonoids, random convex hulls and the variability of random vectors. Bernoulli 4, 377–399 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lipton, A.: Mathematical Methods for Foreign Exchange: A Financial Engineer’s Approach. World Scientific, Singapore (2001)

    Book  Google Scholar 

  36. Miyahara, Y., Fujiwara, T.: The minimal entropy martingale measures for geometric Lévy processes. Finance Stoch. 5, 509–531 (2003)

    MathSciNet  Google Scholar 

  37. Molchanov, I.: Theory of Random Sets. Springer, London (2005)

    MATH  Google Scholar 

  38. Molchanov, I.: Convex geometry of max-stable distributions. Extremes 11, 235–259 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Molchanov, I., Schmutz, M.: Geometric extension of put-call symmetry in the multiasset setting. Tech. rep., University of Bern, Bern (2008). arXiv:0806.4506 [math.PR]

  40. Molchanov, I., Schmutz, M.: Multivariate extensions of put-call symmetry. SIAM J. Financ. Math. 1, 396–426 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Molchanov, I., Schmutz, M.: Exchangeability type properties of asset prices. Adv. Appl. Probab. 43, 666–687 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mosler, K.: Multivariate Dispersion, Central Regions and Depth. The Lift Zonoid Approach. Lect. Notes Statist., vol. 165. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  43. Profeta, C., Roynette, B., Yor, M.: Option Prices as Probabilities. A New Look at Generalized Black-Scholes Formulae. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  44. Ross, S.A.: Options and efficiency. Q. J. Econ. 90, 75–89 (1976)

    Article  MATH  Google Scholar 

  45. Samperi, D.: Calibrating a diffusion pricing model with uncertain volatility: regularization and stability. Math. Finance 12, 71–87 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  46. Schmutz, M.: Zonoid options. Master’s thesis, Institute of Mathematical Statistics and Actuarial Science, University of Bern, Bern (2007)

    Google Scholar 

  47. Schmutz, M.: Semi-static hedging for certain Margrabe type options with barriers. Tech. rep., University of Bern, Bern (2008). arXiv:0810.5146 [math.PR]

  48. Schmutz, M.: Semi-static hedging for certain Margrabe type options with barriers. Quant. Finance 11, 979–986 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Schneider, R.: Convex Bodies. The Brunn–Minkowski Theory. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  50. Shananin, A.A.: To the theory of production functions. In: Models and Algorithms of the Programmed Planning Method, pp. 24–50. Comp. Center AN SSSR, Moscow (1979). In Russian

    Google Scholar 

  51. Shiryaev, A.N.: Essentials of Stochastic Finance: Facts, Models, Theory. World Scientific Publishing, Singapore (1999)

    Google Scholar 

  52. Tankov, P.: Improved Fréchet bounds and model-free pricing of multi-asset options. J. Appl. Probab. 48, 389–403 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Thorsten Rheinländer for inspiring discussions. This work was supported by the Swiss National Science Foundation Grant Nr. 200021-126503.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Molchanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Molchanov, I., Schmutz, M. (2014). Multiasset Derivatives and Joint Distributions of Asset Prices. In: Kabanov, Y., Rutkowski, M., Zariphopoulou, T. (eds) Inspired by Finance. Springer, Cham. https://doi.org/10.1007/978-3-319-02069-3_20

Download citation

Publish with us

Policies and ethics