Skip to main content

Tunneling and the Emergent Universe Scheme

  • Conference paper
  • First Online:
Accelerated Cosmic Expansion

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 38))

Abstract

We present an alternative scheme for an Emergent Universe scenario, developed previously in Phys. Rev. D 86, 083524 (2012), where the universe is initially in a static state supported by a scalar field located in a false vacuum. The universe begins to evolve when, by quantum tunneling, the scalar field decays into a state of true vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Labrana, P. “Emergent Universe by Tunneling,” Phys. Rev. D 86, 083524 (2012) [arXiv:1111.5360 [gr-qc]]

    Google Scholar 

  2. Borde A. and Vilenkin A., Eternal inflation and the initial singularity, 1994 Phys. Rev. Lett. 72 3305

    Google Scholar 

  3. Borde A. and Vilenkin A., Violation of the weak energy condition in inflating spacetimes, 1997 Phys. Rev. D 56 717

    Google Scholar 

  4. Guth, A.H., Eternal inflation, arXiv:astro-ph/0101507

    Google Scholar 

  5. Borde A., Guth A. H. and Vilenkin A., Inflationary space-times are incompletein past directions, 2003 Phys. Rev. Lett. 90 151301

    Google Scholar 

  6. Vilenkin A., Quantum cosmology and eternal inflation, arXiv:gr-qc/0204061

    Google Scholar 

  7. Ellis G. F. R. and Maartens R., The emergent universe: Inflationary cosmology with no singularity, 2004 Class. Quant. Grav. 21 223

    Google Scholar 

  8. Ellis, G.F.R., Murugan J. and Tsagas C. G., The emergent universe: An explicit construction, 2004 Class. Quant. Grav. 21 233

    Google Scholar 

  9. Mulryne D. J., Tavakol R., Lidsey J. E. and Ellis G. F. R., An emergent universe from a loop, 2005 Phys. Rev. D 71 123512

    Google Scholar 

  10. Mukherjee S., Paul B. C., Maharaj S. D. and Beesham A., Emergent universe in Starobinsky model, arXiv:gr-qc/0505103

    Google Scholar 

  11. Mukherjee S., Paul B. C., Dadhich N. K., Maharaj S. D. and Beesham A., Emergent universe with exotic matter, 2006 Class. Quant. Grav. 23 6927

    Google Scholar 

  12. Banerjee A., Bandyopadhyay T. and Chakraborty S., Emergent universe in brane world scenario, arXiv: 0705.3933 [gr-qc]

    Google Scholar 

  13. Nunes, N.J., Inflation: A graceful entrance from loop quantum cosmology, 2005 Phys. Rev. D 72 103510

    Google Scholar 

  14. Lidsey J. E. and Mulryne D. J., A graceful entrance to braneworld inflation, 2006 Phys. Rev. D 73 083508

    Google Scholar 

  15. A. S. Eddington, Mon. Not. Roy. Astron. Soc. 90, 668 (1930)

    Google Scholar 

  16. S. del Campo, R. Herrera and P. Labrana, JCAP 0711 030 (2007)

    Google Scholar 

  17. del Campo, S., R. Herrera, P. Labrana, JCAP 0907, 006 (2009). [arXiv:0905.0614 [gr-qc]]

    Google Scholar 

  18. del Campo, S., Guendelman}, E., R. Herrera, P. Labrana, JCAP 1006 (2010) 026. [arXiv:1006.5734 [astro-ph.CO]]

    Google Scholar 

  19. del Campo, S., Guendelman, E.I., Kaganovich, A.B., R. Herrera, P. Labrana, Phys. Lett. B699 (2011) 211-216. [arXiv:1105.0651 [astro-ph.CO]]

    Google Scholar 

  20. E.I. Guendelman, [arXiv:1103.1427 [gr-qc]]

    Google Scholar 

  21. E.I. Guendelman, [arXiv:1105.3312 [gr-qc]]

    Google Scholar 

  22. Banerjee, A., T. Bandyopadhyay, S. Chakraborty, Gen. Rel. Grav. 40, 1603-1607 (2008). [arXiv:0711.4188 [gr-qc]]

    Google Scholar 

  23. U. Debnath, Class. Quant. Grav. 25, 205019 (2008). [arXiv:0808.2379 [gr-qc]]

    Google Scholar 

  24. B. C. Paul, S. Ghose, Gen. Rel. Grav. 42, 795-812 (2010). [arXiv:0809.4131 [hep-th]]

    Google Scholar 

  25. Beesham, A., Chervon, S.V., S.D. Maharaj, Class. Quant. Grav. 26, 075017 (2009). [arXiv:0904.0773 [gr-qc]]

    Google Scholar 

  26. U. Debnath, S. Chakraborty, Int. J. Theor. Phys. 50, 2892-2898 (2011). [arXiv:1104.1673 [gr-qc]]

    Google Scholar 

  27. Mukerji, S., Mazumder, N., R. Biswas, S. Chakraborty, Int. J. Theor. Phys. 50, 2708-2719 (2011). [arXiv:1106.1743 [gr-qc]]

    Google Scholar 

  28. A. Linde, Phys. Rev. D 59, 023503 (1998)

    Google Scholar 

  29. A. Linde, M. Sasaki and T., Phys. Rev. D 59, 123522 (1999)

    Google Scholar 

  30. S. del Campo and R., Phys. Rev. D 67, 063507 (2003)

    Google Scholar 

  31. del Campo, S., Herrera, R., Saavedra, J., Phys. Rev. D 70, 023507 (2004)

    Google Scholar 

  32. Balart, L., del Campo, S., Herrera, R., Labrana, P., Saavedra, J., Phys. Lett. B647, 313-319 (2007)

    Google Scholar 

  33. S. R. Coleman, Phys. Rev. D 15, 2929 (1977) [Erratum-ibid. D 16, 1248 (1977)]

    Google Scholar 

  34. S. R. Coleman and F. De Luccia, Phys. Rev. D 21, 3305 (1980)

    Google Scholar 

  35. E. Keski-Vakkuri and P. Kraus, Phys. Rev. D 54, 7407 (1996) [arXiv:hep-th/9604151]

    Google Scholar 

  36. Basu, R., A. H. Guth, A. Vilenkin, Phys. Rev. D44, 340-351 (1991)

    Google Scholar 

  37. D. Simon, J. Adamek, A. Rakic and J. C. Niemeyer, JCAP 0911, 008 (2009) [arXiv:0908.2757 [gr-qc]]

    Google Scholar 

  38. Abbott, L.F., Harari, D., Q.H. Park, Class. Quant. Grav. 4, L201 (1987)

    Google Scholar 

  39. W. Israel, Nuovo Cim. B 44S10, 1 (1966) [Erratum-ibid. B 48, 463 (1967)] [Nuovo Cim. B 44, 1 (1966)]

    Google Scholar 

  40. Berezin, V.A., Kuzmin, V.A., I.I. Tkachev, Phys. Rev. D 36, 2919 (1987)

    Google Scholar 

  41. Fischler, W., Paban, S., M. Zanic, C. Krishnan, JHEP 0805, 041 (2008). [arXiv:0711.3417 [hep-th]]

    Google Scholar 

  42. Jordan P., The present state of Dirac’s cosmological hypothesis, 1959 Z.Phys. 157 112; Brans C. and Dicke R. H., Mach’s principle and a relativistic theory of gravitation, 1961 Phys. Rev. 124 925

    Google Scholar 

  43. Barrow, J.D., C.G. Tsagas, Class. Quant. Grav. 26, 195003 (2009)

    Google Scholar 

  44. P. W. Graham, B. Horn, S. Kachru, S. Rajendran and G. Torroba, arXiv:1109.0282 [hep-th]

    Google Scholar 

Download references

Acknowledgement

This work has been partially supported by FONDECYT grant N0 11090410, Mecesup UBB0704 and Universidad del Bío-Bío through grant DIUBB 121407 GI/VC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Labraña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Labraña, P. (2014). Tunneling and the Emergent Universe Scheme. In: Moreno González, C., Madriz Aguilar, J., Reyes Barrera, L. (eds) Accelerated Cosmic Expansion. Astrophysics and Space Science Proceedings, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-319-02063-1_8

Download citation

Publish with us

Policies and ethics