Skip to main content

DNA Sticky End Design and Assignment for Robust Algorithmic Self-assembly

  • Conference paper
DNA Computing and Molecular Programming (DNA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8141))

Included in the following conference series:

Abstract

A major challenge in practical DNA tile self-assembly is the minimization of errors. Using the kinetic Tile Assembly Model, a theoretical model of self-assembly, it has been shown that errors can be reduced through abstract tile set design. In this paper, we instead investigate the effects of “sticky end” sequence choices in systems using the kinetic model along with the nearest-neighbor model of DNA interactions. We show that both the sticky end sequences present in a system and their positions in the system can significantly affect error rates, and propose algorithms for sequence design and assignment.

The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-01928-4_15

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. StickyDesign, http://dna.caltech.edu/DNA_Sequence_Design_Tools/StickyDesign/

  2. The Xgrow simulator, http://dna.caltech.edu/Xgrow/

  3. Barish, R.D., Schulman, R., Rothemund, P.W.K., Winfree, E.: An information-bearing seed for nucleating algorithmic self-assembly. Proc. Natl. Acad. Sci. USA 106, 6054–6059 (2009)

    Article  Google Scholar 

  4. Chen, H.-L., Goel, A.: Error free self-assembly using error prone tiles. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA10. LNCS, vol. 3384, pp. 62–75. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Chen, H.-L., Kao, M.-Y.: Optimizing tile concentrations to minimize errors and time for DNA tile self-assembly systems. In: Sakakibara, Y., Mi, Y. (eds.) DNA16. LNCS, vol. 6518, pp. 13–24. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Chen, H.-L., Schulman, R., Goel, A., Winfree, E.: Reducing facet nucleation during algorithmic self-assembly. Nano Lett. 7, 2913–2919 (2007)

    Article  Google Scholar 

  7. Deaton, R., Chen, J., Bi, H., Rose, J.: A software tool for generating non-crosshybridizing libraries of DNA oligonucleotides. In: Hagiya, M., Ohuchi, A. (eds.) DNA8. LNCS, vol. 2568, pp. 252–261. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55, 78–88 (2012)

    Article  Google Scholar 

  9. Evans, C.G., Hariadi, R.F., Winfree, E.: Direct atomic force microscopy observation of DNA tile crystal growth at the single-molecule level. J. Am. Chem. Soc. 134, 10485–10492 (2012)

    Article  Google Scholar 

  10. Fujibayashi, K., Murata, S.: Precise simulation model for DNA tile self-assembly. IEEE Trans. Nanotechnol. 8, 361–368 (2009)

    Article  Google Scholar 

  11. Fujibayashi, K., Hariadi, R.F., Park, S.H., Winfree, E., Murata, S.: Toward reliable algorithmic self-assembly of DNA tiles: A fixed-width cellular automaton pattern. Nano Lett. 8, 1791–1797 (2008)

    Article  Google Scholar 

  12. Jang, B., Kim, Y., Lombardi, F.: Error tolerance of DNA self-assembly by monomer concentration control. In: 2006 21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 89–97. IEEE (2006)

    Google Scholar 

  13. Kick, A., Bönsch, M., Mertig, M.: EGNAS: An exhaustive DNA sequence design algorithm. BMC Bioinformatics 13, 138 (2012)

    Article  Google Scholar 

  14. Li, Z., Liu, M., Wang, L., Nangreave, J., Yan, H., Liu, Y.: Molecular behavior of DNA origami in higher-order self-assembly. J. Am. Chem. Soc. 132, 13545–13552 (2013)

    Article  Google Scholar 

  15. Nangreave, J., Yan, H., Liu, Y.: Studies of thermal stability of multivalent DNA hybridization in a nanostructured system. Biophys. J. 97, 563–571 (2009)

    Article  Google Scholar 

  16. Park, S.H., Yin, P., Liu, Y., Reif, J.H., LaBean, T.H., Yan, H.: Programmable DNA self-assemblies for nanoscale organization of ligands and proteins. Nano Lett. 5, 729–733 (2013)

    Article  Google Scholar 

  17. Patitz, M.J.: An introduction to tile-based self-assembly. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445, pp. 34–62. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Phan, V., Garzon, M.H.: On codeword design in metric DNA spaces. Nat. Comput. 8, 571–588 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pinheiro, A.V., Nangreave, J., Jiang, S., Yan, H., Liu, Y.: Steric crowding and the kinetics of DNA hybridization within a DNA nanostructure system. ACS Nano 6, 5521–5530 (2013)

    Article  Google Scholar 

  20. Reif, J.H., Sahu, S., Yin, P.: Compact error-resilient computational DNA tiling assemblies. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA10. LNCS, vol. 3384, pp. 293–307. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2, e424 (2004)

    Google Scholar 

  22. SantaLucia, J., Hicks, D.: The Thermodynamics of DNA Structural Motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–440 (2004)

    Article  Google Scholar 

  23. Schulman, R., Yurke, B., Winfree, E.: Robust self-replication of combinatorial information via crystal growth and scission. Proc. Natl. Acad. Sci. USA 109, 6405–6410 (2012)

    Article  Google Scholar 

  24. Tanaka, F.: Design of nucleic acid sequences for DNA computing based on a thermodynamic approach. Nucleic Acids Res. 33, 903–911 (2005)

    Article  Google Scholar 

  25. Tulpan, D., Andronescu, M., Chang, S.B., Shortreed, M.R., Condon, A., Hoos, H.H., Smith, L.M.: Thermodynamically based DNA strand design. Nucleic Acids Res. 33, 4951–4964 (2005)

    Article  Google Scholar 

  26. Wei, B., Dai, M., Yin, P.: Complex shapes self-assembled from single-stranded DNA tiles. Nature 485, 623–626 (2012)

    Article  Google Scholar 

  27. Winfree, E.: On the Computational Power of DNA Annealing and Ligation. In: DNA Computers. DIMACS Series in Discrete Mathematics and Computer Science, pp. 199–221. AMS (1996)

    Google Scholar 

  28. Winfree, E.: Simulations of computing by self-assembly. Tech. Rep. CaltechCSTR:1998.22, Pasadena, CA (1998)

    Google Scholar 

  29. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic self-assembly. In: Chen, J., Reif, J.H. (eds.) DNA9. LNCS, vol. 2943, pp. 126–144. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Evans, C.G., Winfree, E. (2013). DNA Sticky End Design and Assignment for Robust Algorithmic Self-assembly. In: Soloveichik, D., Yurke, B. (eds) DNA Computing and Molecular Programming. DNA 2013. Lecture Notes in Computer Science, vol 8141. Springer, Cham. https://doi.org/10.1007/978-3-319-01928-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01928-4_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01927-7

  • Online ISBN: 978-3-319-01928-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics