Skip to main content

Human Grasping Simulation

  • Chapter
  • First Online:
From Robot to Human Grasping Simulation

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 19))

  • 2032 Accesses

Abstract

In this chapter, the purpose is to study the adapted grasp quality measures presented in the previous chapter in order to find the minimum set of indices that enable the evaluation of the different aspects of the human grasp on simulation. Moreover, the aim is to propose a global grasp quality index combining the different grasp aspects. Finally, this framework for grasp evaluation is used to compare the grasp capabilities of a prosthetic hand with the ones obtained with our human hand model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ottobock.com/cps/rde/xchg/ob_com_en/hs.xsl/49464.html

  2. 2.

    http://www.touchbionics.com/products/active-prostheses/i-limb-ultra/

  3. 3.

    http://bebionic.com/

  4. 4.

    Automation and Control Institute, Vienna University of Technology, Vienna, Austria.

  5. 5.

    http://www.living-with-michelangelo.com/

References

  1. Boivin, E., Sharf, I., Doyon, M.: Optimum grasp of planar and revolute objects with gripper geometry constraints. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 326–332 (Apr–May 2004).

    Google Scholar 

  2. Chinellato, E., Fisher, R., Morales, A., del Pobil, A.: Ranking planar grasp configurations for a three-finger hand. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 1133–1138 (Sep 2003).

    Google Scholar 

  3. Chinellato, E., Morales, A., Fisher, R., del Pobil, A.: Visual quality measures for characterizing planar robot grasps. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 35(1), 30–41 (2005)

    Article  Google Scholar 

  4. Kim, B.H., Yi, B.J., Oh, S.R., Suh, I.H.: Non-dimensionalized performance indices based optimal grasping for multi-fingered hands. Mechatronics 14(3), 255–280 (2004)

    Article  Google Scholar 

  5. Vergara, M., Pérez-González, A., Serrano-Cabedo, J., Rodríguez-Cervantes, P.: Resultados de un trabajo de campo sobre agarres utilizados en tareas cotidianas. In: XIX Congreso Nacional de Ingeniería Mecánica (CNIM 2012), Castellon, Spain (Nov 2012).

    Google Scholar 

  6. Sancho-Bru, J., Vergara, M., J.B.N.J., Mora Aguilar, M., Pérez-González, A.: Medición del movimiento de todos los segmentos de la mano mediante videogrametría. In: XIX Congreso Nacional de Ingeniería Mecánica (CNIM 2012), Castellon, Spain (Nov 2012).

    Google Scholar 

  7. Darling, W.G., Cole, K.J., Miller, G.F.: Coordination of index finger movements. J. Biomech. 27(4), 479–491 (1994), http://www.ncbi.nlm.nih.gov/pubmed/8188728

    Google Scholar 

  8. Rash, G.S., Belliappa, P.P., Wachowiak, M.P., Somia, N.N., Gupta, A.: A demonstration of validity of 3-d video motion analysis method for measuring finger flexion and extension. J. Biomech. 32(12), 1337–1341 (1999), http://www.ncbi.nlm.nih.gov/pubmed?term=A%20demonstration%20of%20the%20validity%20of%20a%203-D%20video%20motion%20analysis%20method%20for%20measuring%20finger%20flexion%20and%20extension

    Google Scholar 

  9. Yun, M.H., Freivalds, A.: Analysis of tool Grip tasks using a 3-D glove. IOS Press, Michigan, USA (1998)

    Google Scholar 

  10. Speirs, A.D., Small, C.F., Bryant, J.T., Pichora, D.R., Zee, B.Y.: Three-dimensional metacarpophalangeal joint kinematics using two markers on the phalanx. Proc. Inst. Mech. Eng. H 215(4), 415–419 (2001), http://www.ncbi.nlm.nih.gov/pubmed/11521764

  11. Vergara, M., Sancho-Bru, J.L., Pérez-González, A.: Description and validation of a non-invasive technique to measure the posture of all hand segments. J. Biomech. Eng. 125(6), 917–922 (2003), http://www.ncbi.nlm.nih.gov/pubmed?term=A%20demonstration%20of%20the%20validity%20of%20a%203-D%20video%20motion%20analysis%20method%20for%20measuring%20finger%20flexion%20and%20extension

  12. Hudgins, B., Parker, P., Scott, R.: Control of artificial limbs using myoelectric pattern recognition. Med. Life Sci. Eng. 13, 21–38 (1994)

    Google Scholar 

  13. Merrill, D.R., Lockhart, J., Troyk, P.R., Weir, R.F., Hankin, D.L.: Development of an implantable myoelectric sensor for advanced prosthesis control. Artif. Organs 35(3), 249–252 (2011), http://dx.doi.org/10.1111/j.1525-1594.2011.01219.x

  14. Harvey, Z.T., Potter, B.K., Vandersea, J., Wolf, E.: Prosthetic advances. J. Surg. Orthop. Adv. 21(1), 58–64 (2012), http://www.ncbi.nlm.nih.gov/pubmed/22381512

    Google Scholar 

  15. Engeberg, E.D.: A physiological basis for control of a prosthetic hand. Biomed. Signal Process. Control 8(1), 6–15 (2013), http://www.sciencedirect.com/science/article/pii/S1746809412000717

  16. Cipriani, C., Controzzi, M., Carrozza, M.C.: The smarthand transradial prosthesis. J. Neuroeng. Rehabil. Signal Process. 8, 29–29 (2011), http://www.ncbi.nlm.nih.gov/pubmed/21600048?dopt=Abstract&holding=f1000, f1000m, isrctn

    Google Scholar 

  17. Dalley, S., Wiste, T., Withrow, T., Goldfarb, M.: Design of a multifunctional anthropomorphic prosthetic hand with extrinsic actuation. IEEE/ASME Trans. Mechatron. 14(6), 699–706 (dec 2009).

    Google Scholar 

  18. Weir, R., Clark, S., Mitchell, M., Puchhammer, G., Kelley, K., Haslinger, M., Kumar, N., Hofbauer, R., Kuschnigg, P., Cornelius, V., Eder, M., Grausenburger, R.: New multifunctional prosthetic arm and hand systems. In: Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE. pp. 4359–4360 (Aug 2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz León .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

León, B., Morales, A., Sancho-Bru, J. (2014). Human Grasping Simulation. In: From Robot to Human Grasping Simulation. Cognitive Systems Monographs, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-01833-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01833-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01832-4

  • Online ISBN: 978-3-319-01833-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics