Skip to main content

Human Grasp Evaluation

  • Chapter
  • First Online:
From Robot to Human Grasping Simulation

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 19))

Abstract

The purpose of this chapter is to present a review of the grasp quality measures that have been proposed and then the adaptation of the most common robotic grasp quality measures to the human hand grasp evaluation. Additionally, we propose complementary quality indices that may consider biomechanical aspects not taken into account by the robotic indices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.qhull.org/

References

  1. Sancho-Bru, J.L., Mora, M.C., León, B.E., Antonio Pérez-González, Iserte, J.L., Morales, A.: Grasp modelling with a biomechanical model of the hand. Computer Methods in Biomechanics and Biomedical Engineering, 1–14 (2012). http://www.tandfonline.com/doi/abs/10.1080/10255842.2012.682156

  2. Goussous, F.A.: Grasp planning for digital humans. Ph.D. thesis, Iowa University (2007)

    Google Scholar 

  3. Endo, Y., Kanai, S., Kishinami, T., Miyata, N., Kouchi, M., Mochimaru, M.: A computer-aided ergonomic assessment and product design system using digital hands. In: Proceedings of the 1st international conference on Digital human modeling. pp. 833–842. Springer, Germany (2007)

    Google Scholar 

  4. Suárez, R., Roa, M., Cornella, J.: Grasp quality measures. Technical University of Catalonia, Tech. rep (2006)

    Google Scholar 

  5. Ferrari, C., Canny, J.: Planning optimal grasps. In: Proceedings 1992 IEEE International Conference on Robotics and Automation, pp. 2290–2295 (1992)

    Google Scholar 

  6. Kim, B.H., Oh, S.R., Yi, B.J., Suh, I.H.: Optimal grasping based on non-dimensionalized performance indices. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems. vol. 2, pp. 949–956 (2001)

    Google Scholar 

  7. Roa Garzón, M.: Grasp planning methodology for 3D arbitrary shaped objects. Ph. d. thesis, Universidad Politécnica de Cataluña (2009)

    Google Scholar 

  8. Li, Z., Sastry, S.: Task-oriented optimal grasping by multifingered robot hands. IEEE J. Robot. Autom. 4(1), 32–44 (1987)

    Article  Google Scholar 

  9. Ben-Israel, A.: A volume associated with m x n matrices. Linear algebra and its applications 167(0), 87–111 (1992). http://www.sciencedirect.com/science/article/pii/002437959290340G

  10. Ding, D., Lee, Y.H., Wang, S.: Computation of 3-d form-closure grasps. IEEE Trans. Robot. Autom. 17(4), 515–522 (2001)

    Article  Google Scholar 

  11. Ponce, J., Sullivan, S., Sudsang, A., Boissonnat, J.D., Merlet, J.P.: On computing four-finger equilibrium and force-closure grasps of polyhedral objects. Int. J. Robot. Res. 16(1), 11–35 (1997)

    Article  Google Scholar 

  12. Mirtich, B., Canny, J.: Easily computable optimum grasps in 2-d and 3-d. In: Proceedings IEEE International Conference on Robotics and Automation. pp. 739–747 (1994)

    Google Scholar 

  13. Xiong, C., Li, Y., Ding, H., Xiong, Y.L.: On the dynamic stability of grasping. I. J. Robot. Res. 18(9), 951–958 (1999). http://dblp.uni-trier.de/db/journals/ijrr/ijrr18.html

    Google Scholar 

  14. Chinellato, E., Fisher, R., Morales, A., del Pobil, A.: Ranking planar grasp configurations for a three-finger hand. In: Proceedings of the IEEE International Conference on Robotics and Automation. vol. 1, pp. 1133–1138 (2003)

    Google Scholar 

  15. Chinellato, E., Morales, A., Fisher, R., del Pobil, A.: Visual quality measures for characterizing planar robot grasps. IEEE Trans. Syst., Man, Cybern., C: Appl. Rev. 35(1), 30–41 (2005)

    Google Scholar 

  16. Park, Y.C., Starr, G.P.: Grasp synthesis of polygonal objects using a three-fingered robot hand. Int. J. Robot. Res. 11(3), 163–184 (1992)

    Article  Google Scholar 

  17. Ponce, J., Faverjon, B.: On computing three-finger force-closure grasps of polygonal objects. IEEE Trans. Robot. Autom. 11(6), 868–881 (1995)

    Article  Google Scholar 

  18. Kirkpatrick, D.G., Mishra, B., Yap, C.K.: Quantitative steinitz’s theorems with applications to multifingered grasping. In: Proceedings of the twenty-second annual ACM symposium on Theory of computing. pp. 341–351. STOC ’90, ACM, NY, USA (1990)

    Google Scholar 

  19. Borst, C., Fischer, M., Hirzinger, G.: Grasping the dice by dicing the grasp. In: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003). vol. 4, pp. 3692–3697 (2003)

    Google Scholar 

  20. Zheng, Y., Qian, W.H.: Limiting and minimizing the contact forces in multifingered grasping. Mech. Mach. Theor. 41(10), 1243–1257 (2006). http://www.sciencedirect.com/science/article/pii/S0094114X05001953

  21. Miller, A.T., Allen, P.K.: Examples of 3D grasp quality computations. In: Proceedingsof the IEEE International Conference on Robotics and Automation, vol. 2, pp. 1240–1246 (1999)

    Google Scholar 

  22. Liu, G., Li, Z.: Real-time grasping-force optimization for multifingered manipulation: theory and experiments. IEEE/ASME Trans. Mechatron. 9(1), 65–77 (2004)

    Article  Google Scholar 

  23. Murray, R.N., Li, Z., Sastry, S.: A mathematical introduction to robotics manipulation. CRC Press, US (1994)

    Google Scholar 

  24. Liegeois, A.: Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Trans. Syst. Man, Cybernet. 7(12), 842–868 (1977)

    Google Scholar 

  25. Klein, C.A., Blaho, B.E.: Dexterity measures for the design and control of kinematically redundant manipulators. Int. J. Robot. Res. 6(2), 72–83 (1987)

    Article  Google Scholar 

  26. Kim, J.O., Khosla, P.: Dexterity measures for design and control of manipulators. Proc. IROS Workshop Intell. Robot. Syst. 91, 758–763 (1991)

    Article  Google Scholar 

  27. Salisbury, J.K., Craig, J.J.: Articulated hands: Force control and kinematic issues. Int. J. Robot. Res. 1(1), 4–17 (1982)

    Article  Google Scholar 

  28. Zhu, X., Ding, H., Li, H.: A quantitative measure for multi-fingered grasps. Proceedings IEEE/ASME International Conference on Advanced Intelligent. Mechatronics, In (2001). (1), 213–219 (2001)

    Google Scholar 

  29. Haschke, R., Steil, J., Steuwer, I., Ritter, H.: Task-oriented quality measures for dextrous grasping. In: Proceedings IEEE International Symposium on Computational Intelligence in Robotics and Automation. pp. 689–694 (2005)

    Google Scholar 

  30. Boivin, E., Sharf, I., Doyon, M.: Optimum grasp of planar and revolute objects with gripper geometry constraints. In: Proceedings of the IEEE International Conference on Robotics and Automation. vol. 1, pp. 326–332 (2004)

    Google Scholar 

  31. Cheraghpour, F., Moosavian, S., Nahvi, A.: Multiple aspect grasp performance index for cooperative object manipulation tasks. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics. AIM 2009. pp. 386–391 (2009)

    Google Scholar 

  32. Endo, Y., Kanai, S., Kishinami, T., Miyata, N., Kouchi, M., Mochimaru, M.: Virtual grasping assessment using 3d digital hand model. In: 10th Annual Applied Ergonomics Conference: Celebrating the Past—Shaping the Future (2007)

    Google Scholar 

  33. McAtamney, L.: Nigel Corlett, E.: RULA: A survey method for the investigation of work-related upper limb disorders. Appl. Ergon. 24(2), 91–9 (1993)

    Article  Google Scholar 

  34. Zacharias, F., Schlette, C., Schmidt, F., Borst, C., Rossmann, J., Hirzinger, G.: Making planned paths look more humanlike in humanoid robot manipulation planning. IEEE International Conference on Robotics and Automation (ICRA), In (2011)

    Google Scholar 

  35. Supuk, T., Kodek, T., Bajd, T.: Estimation of hand preshaping during human grasping. Med. Eng. Phys. 27(9), 790–7 (2005)

    Article  Google Scholar 

  36. Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 14(11), 793–801 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz León .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

León, B., Morales, A., Sancho-Bru, J. (2014). Human Grasp Evaluation. In: From Robot to Human Grasping Simulation. Cognitive Systems Monographs, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-01833-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01833-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01832-4

  • Online ISBN: 978-3-319-01833-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics