Skip to main content

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 157))

Abstract

We review recent results (Bonito et al., SIAM J. Numer. Anal., to appear; Bonito et al., Numer. Math., to appear; Bonito et al., in preparation) on time-discrete discontinuous Galerkin (dG) methods for advection-diffusion model problems defined on deformable domains and written on the arbitrary Lagrangian Eulerian (ALE) framework. ALE formulations deal with PDEs on deformable domains upon extending the domain velocity from the boundary into the bulk with the purpose of keeping mesh regularity. We describe the construction of higher order in time numerical schemes enjoying stability properties independent of the arbitrary extension chosen. Our approach is based on the validity of Reynolds’ identity for dG methods which generalize to higher order schemes the geometric conservation law (GCL) condition. Stability, a priori and a posteriori error analyses are briefly discussed and illustrated by insightful numerical experiments.

AMS(MOS) subject classifications. 65M12, 65M15, 65M50, 65M60.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Akrivis and Ch. Makridakis. Galerkin time-stepping methods for nonlinear parabolic equations. M2AN Math. Model. Numer. Anal., 38(2):261–289, 2004.

    Google Scholar 

  2. G. Akrivis, Ch. Makridakis, and R.H. Nochetto. A posteriori error estimates for the Crank-Nicolson method for parabolic equations. Math. Comp., 75(254):511–531, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Akrivis, Ch. Makridakis, and R.H. Nochetto. Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods. Numer. Math., 114(1):133–160, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Akrivis, Ch. Makridakis, and R.H. Nochetto. Galerkin and Runge-Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence. Numer. Math., 118(3):429–456, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Badia and R. Codina. Analysis of a stabilized finite element approximation of the transient convection-diffusion equation using an ALE framework. SIAM J. Numer. Anal., 44(5):2159–2197 (electronic), 2006.

    Google Scholar 

  6. E. Bänsch. Finite element discretization of the Navier-Stokes equations with a free capillary surface. Numer. Math., 88(2):203–235, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Boffi and L. Gastaldi. Stability and geometric conservation laws for ALE formulations. Comput. Methods Appl. Mech. Engrg., 193(42–44):4717–4739, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Bonito, I. Kyza, and R.H. Nochetto. Time-discrete higher order ALE formulations: A posteriori error analysis. In preparation.

    Google Scholar 

  9. A. Bonito, I. Kyza, and R.H. Nochetto. Time-discrete higher order ALE formulations: A priori error analysis. Numer. Math., 125(2):225–257, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Bonito, I. Kyza, and R.H. Nochetto. Time-discrete higher order ALE formulations: Stability. SIAM J. Numer. Anal., 51(1):577–604, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Bonito, R.H. Nochetto, and M.S. Pauletti. Parametric FEM for geometric biomembranes. J. Comput. Phys., 229(9):3171–3188, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Bonito, R.H. Nochetto, and M.S. Pauletti. Dynamics of biomembranes: Effect of the bulk fluid. Math. Model. Nat. Phenom., 6(5):25–43, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  13. S.C. Brenner and L.R. Scott. The mathematical theory of finite element methods, volume 15 of Texts in Applied Mathematics. Springer, New York, third edition, 2008.

    Google Scholar 

  14. S. Brogniez, A. Rajasekharan, and Ch. Farhat. Provably stable and time-accurate extensions of Runge-Kutta schemes for CFD computations on moving grids. Internat. J. Numer. Methods Fluids, 69(7):1249–1270, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Chrysafinos and N.J. Walkington. Lagrangian and moving mesh methods for the convection diffusion equation. M2AN Math. Model. Numer. Anal., 42(1):25–55, 2008.

    Google Scholar 

  16. J. Donéa, S. Giuliani, and J.P. Halleux. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Engrg., 33(1–3):689–723, 1982.

    Article  MATH  Google Scholar 

  17. Ch. Farhat, Ph. Geuzaine, and C. Grandmont. The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids. J. Comput. Phys., 174(2):669–694, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  18. Ch. Farhat and Ph. Geuzaine. Design and analysis of robust ALE time-integrators for the solution of unsteady flow problems on moving grids. Internat. J. Numer. Methods Fluids, 193(39–41):4073–4095, 2004.

    Google Scholar 

  19. Ch. Farhat, M. Lesoinne, and N. Maman. Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation and distributed solution. Internat. J. Numer. Methods Fluids, 21(10): 807–835, 1995. Finite element methods in large-scale computational fluid dynamics (Tokyo, 1994).

    Google Scholar 

  20. L. Formaggia and F. Nobile. A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math., 7(2): 105–131, 1999.

    MathSciNet  MATH  Google Scholar 

  21. L. Formaggia and F. Nobile. Stability analysis of second-order time accurate schemes for ALE-FEM. Comput. Methods Appl. Mech. Engrg., 193(39–41): 4097–4116, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  22. L. Gastaldi. A priori error estimates for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math., 9(2):123–156, 2001.

    MathSciNet  MATH  Google Scholar 

  23. Ph. Geuzaine, C. Grandmont, and Ch. Farhat. Design and analysis of ale schemes with provable second-order time-accuracy for inviscid and viscous flow simulations. Journal of Computational Physics, 191(1):206–227, 2003.

    Article  MATH  Google Scholar 

  24. H. Guillard and Ch. Farhat. On the significance of the geometric conservation law for flow computations on moving meshes. Comput. Methods Appl. Mech. Engrg., 190(11–12):1467–1482, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Hansbo, J. Hermansson, and T. Svedberg. Nitsche’s method combined with space-time finite elements for ALE fluid-structure interaction problems. Comput. Methods Appl. Mech. Engrg., 193(39–41):4195–4206, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  26. C.W. Hirt, A.A. Amsden, and J.L. Cook. An arbitrary Lagrangian-Eulerian computing method for all flow speeds [J. Comput. Phys. 14 (1974), no. 3, 227–253]. J. Comput. Phys., 135(2):198–216, 1997. With an introduction by L. G. Margolin, Commemoration of the 30th anniversary {of J. Comput. Phys.}.

    Google Scholar 

  27. T.J.R. Hughes, W.K. Liu, and T.K. Zimmermann. Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Engrg., 29(3):329–349, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Jamet. Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal., 15(5): 912–928, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. A. Mackenzie and W. R. Mekwi. An unconditionally stable second-order accurate ALE-FEM scheme for two-dimensional convection-diffusion problems. IMA J. Numer. Anal., 32(3):888–905, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  30. Ch. Makridakis and R.H. Nochetto. A posteriori error analysis for higher order dissipative methods for evolution problems. Numer. Math., 104(4):489–514, 2006.

    Google Scholar 

  31. F. Nobile. Numerical approximation on fluid-structure interaction problems with application to haemodynamics. PhD thesis, École Polytechnique Fédérale de Lausanne, 2001.

    Google Scholar 

  32. L.A. Ortega and G. Scovazzi. A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian-Eulerian computations with nodal finite elements. J. Comput. Phys., 230(17):6709–6741, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  33. O. Pironneau, J. Liou, and T. Tezduyar. Characteristic-Galerkin and Galerkin/least-squares space-time formulations for the advection-diffusion equations with time-dependent domains. Comput. Methods Appl. Mech. Engrg., 100(1):117–141, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Quarteroni and L. Formaggia. Mathematical modelling and numerical simulation of the cardiovascular system, volume XII of Handb. Numer. Anal. North-Holland, Amsterdam, 2004.

    Google Scholar 

  35. A. Quarteroni, M. Tuveri, and A. Veneziani. Computational vascular fluid dynamics: problems, models and methods. Comput. Visual. Sci., 2(4):163–197, 2000.

    Article  MATH  Google Scholar 

  36. P.D. Thomas and C.K. Lombard. The geometric conservation law–a link between finite-difference and finite–volume methods for flow computation on moving grids. AIAA Paper 78–1208, 1978.

    Google Scholar 

  37. V. Thomée. Galerkin finite element methods for parabolic problems, volume 25 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 2006.

    Google Scholar 

Download references

Acknowledgements

The work of the Andrea Bonito author was supported in part by NSF Grant DMS-0914977. The work of the Irene Kyza author was supported in part by the European Social Fund (ESF)-European Union (EU) and National Resources of the Greek State within the framework of the Action “Supporting Postdoctoral Researchers” of the Operational Programme “Education and Lifelong Learning (EdLL)”. The work of the Ricardo H. Nochetto author was supported in part by NSF Grants DMS-0807811 and DMS-1109325.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Bonito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bonito, A., Kyza, I., Nochetto, R.H. (2014). A dG Approach to Higher Order ALE Formulations in Time. In: Feng, X., Karakashian, O., Xing, Y. (eds) Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations. The IMA Volumes in Mathematics and its Applications, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-01818-8_10

Download citation

Publish with us

Policies and ethics