Skip to main content

RCC and the Theory of Simple Regions in ℝ2

  • Conference paper
Spatial Information Theory (COSIT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8116))

Included in the following conference series:

Abstract

The theory of mereology and its topological extensions, called mereotopologies, are point-free approaches that allow to model information while avoiding several puzzling assumptions typical of set-theoretical systems. Although points can be introduced in a mereology or mereotopology, the idea is that one does so only when their existence is clearly motivated. The Region Connection Calculus, RCC, is a mereotopological system that assumes upfront the existence of points: points must be accepted for the system to have the desired semantics. This is awkward from the mereological viewpoint and is considered unsatisfactory from the cognitive and the philosophical perspectives on which mereology rests.

We prove that, in dimension two and with the standard semantics, a theory equivalent to RCC can be given without any reference to points at the semantic level also. The theory, based on mereology, uses the topological primitive ‘being a simple region’ (aka ‘being strongly self-connected’).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, B.: Carving up space: Steps towards construction of an absolutely complete theory of spatial regions. In: Alferes, J.J., Pereira, L.M., Orlowska, E. (eds.) JELIA 1996. LNCS, vol. 1126, pp. 337–353. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  2. Borgo, S., Guarino, N., Masolo, C.: A pointless theory of space based on strong connection and congruence. In: Carlucci Aiello, L., Doyle, J., Shapiro, S.C. (eds.) International Conference on Principles of Knowledge Representation and Reasoning (KR 1996), Boston, MA, pp. 220–229. Morgan Kaufmann (1996)

    Google Scholar 

  3. Borgo, S., Guarino, N., Masolo, C.: Qualitative spatial modelling based on parthood, strong connection and congruence. Technical Report Internal Report 03/97, LADSEB-CNR, March 1997 (1997)

    Google Scholar 

  4. Casati, R., Varzi, A.C.: Parts and Places. The Structure of Spatial Representation. MIT Press, Cambridge, MA (1999)

    Google Scholar 

  5. Cohn, A.G., Renz, J.: Qualitative spatial representation and reasoning. In: van Harmelen, F., et al. (eds.) Handbook of Knowledge Representation, pp. 551–596. Elsevier (2007)

    Google Scholar 

  6. Dugat, V., Gambarotto, P., Larvor, Y.: Qualitative theory of shape and structure. Progress in Artificial Intelligence, 850–850 (1999)

    Google Scholar 

  7. Eschenbach, C.: A predication calculus for qualitative spatial representations. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 157–172. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Galton, A.: Towards a qualitative theory of movement. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988, pp. 377–396. Springer, Heidelberg (1995)

    Google Scholar 

  9. Galton, A.: Spatial and temporal knowledge representation. Earth Science Informatics 2(3), 169–187 (2009)

    Article  Google Scholar 

  10. Gotts, N.M.: How far can we ‘C’? defining a ‘doughnut’ using connection alone. In: Proceedings of the 4th International Conference on Principles of Knowledge Representation and Reasoning (KR 1994). Morgan Kaufmann (1994)

    Google Scholar 

  11. Gotts, N.M.: Formalizing commonsense topology: The inch calculus. In: Kautz, H., Selman, B. (eds.) International Symposium on Artificial Intelligence and Mathematics (AI/MATH 1996), pp. 72–75 (1996)

    Google Scholar 

  12. Kontchakov, R., Nenov, Y., Pratt-Hartmann, I., Zakharyaschev, M.: On the decidability of connectedness constraints in 2D and 3D euclidean spaces. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI 2011, vol. Two, pp. 957–962. AAAI Press (2011)

    Google Scholar 

  13. Kontchakov, R., Pratt-Hartmann, I., Zakharyaschev, M.: Interpreting Topological Logics over Euclidean Space. In: Twelfth International Conference on Principles of Knowledge Representation and Reasoning, KR 2010 (2010)

    Google Scholar 

  14. Muller, P.: Topological Spatio–Temporal Reasoning and Representation. Computational Intelligence 18(3), 420–450 (2002)

    Article  MathSciNet  Google Scholar 

  15. Munkres, J.R.: Topology, 2nd edn. Prentice Hall (2000)

    Google Scholar 

  16. Nenov, Y., Pratt-Hartmann, I.: On the computability of region-based euclidean logics. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 439–453. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Pratt-Hartmann, I.: First-order mereotopology. In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 13–97. Springer (2007)

    Google Scholar 

  18. Pratt-Hartmann, I., Schoop, D.: Elementary polyhedral mereotopology. Journal of Philosophical Logic 31, 469–498 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connections. In: Nebel, B., Rich, C., Swartout, W. (eds.) International Conference on Principles of Knowledge Representation and Reasoning (KR 1992), pp. 165–176. Morgan Kaufmann (1992)

    Google Scholar 

  20. Renz, J., Rauh, R., Knauff, M.: Towards cognitive adequacy of topological spatial relations. In: Habel, C., Brauer, W., Freksa, C., Wender, K.F. (eds.) Spatial Cognition 2000. LNCS (LNAI), vol. 1849, pp. 184–197. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  21. Stell, J.G.: Boolean connection algebras: a new approach to the region-connection calculus. Artificial Intelligence 122, 111–136 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Stell, J.G.: Boolean connection algebras; a new approach to the region-connection calculus. Artificial Intelligence 122, 111–136 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stell, J.G., Worboys, M.F.: The algebraic structure of sets of regions. In: Spatial Information Theory A Theoretical Basis for GIS, pp. 163–174. Springer (1997)

    Google Scholar 

  24. Thompson, R.J., Oosterom, P.: Connectivity in the regular polytope representation. GeoInformatica 15(2), 223–246 (2009)

    Article  Google Scholar 

  25. Varzi, A.C.: Spatial reasoning and ontology: Parts, wholes, and locations. In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 945–1038. Springer (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Borgo, S. (2013). RCC and the Theory of Simple Regions in ℝ2 . In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds) Spatial Information Theory. COSIT 2013. Lecture Notes in Computer Science, vol 8116. Springer, Cham. https://doi.org/10.1007/978-3-319-01790-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01790-7_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01789-1

  • Online ISBN: 978-3-319-01790-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics