Skip to main content

Human Spatial Behavior, Sensor Informatics, and Disaggregate Data

  • Conference paper
Spatial Information Theory (COSIT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8116))

Included in the following conference series:

Abstract

With the increasing availability of tracking technology, researchers have new tools for examining patterns of human spatial behavior. However, due to limitations of GPS, traditional tracking tools cannot be applied reliably indoors. Monitoring indoor movement can significantly improve building management, emergency operations, and security control; it can also reveal relationships among spatial behavior and decision making, the complexity of such spaces, and the existence of different strategies or approaches to acquiring and using knowledge about the built environment (indoors and out). By employing methods from computer science and GIS we show that pedestrian indoor movement trajectories can be successfully tracked and analyzed with existing sensor and WiFi-based positioning systems over long periods of time and at fine grained temporal scales. We present a month-long experiment with 37 participants tracked through an institutional setting and demonstrate how post-processing of the collected sensor dataset of over 36 million records can be employed to better understand indoor human behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Laube, P.: Progress in movement pattern analysis. Behaviour Monitoring and Interpretation-BMI-Smart Environments 3, 43–71 (2009)

    Google Scholar 

  2. Li, R., Klippel, A.: Wayfinding in Libraries: Can Problems Be Predicted? Journal of Map & Geography Libraries 8(1), 21–38 (2012)

    Article  Google Scholar 

  3. Liebig, T., Xu, Z., May, M., Wrobel, S.: Pedestrian Quantity Estimation with Trajectory Patterns. Machine Learning and Knowledge Discovery in Databases, 629–643 (2012)

    Google Scholar 

  4. Evans, G.W., Marrero, D.G., Butler, P.A.: Environmental learning and cognitive mapping. Environment and Behavior 13(1), 83–104 (1981)

    Article  Google Scholar 

  5. Downs, R.M.: Image & environment: Cognitive mapping and spatial behavior. Aldine (2005)

    Google Scholar 

  6. Downs, R.M., Stea, D.: Cognitive maps and spatial behavior: Process and products. Image and Environment 8(26) (1973)

    Google Scholar 

  7. Kitchin, R.M.: Cognitive maps: What are they and why study them? Journal of Environmental Psychology 14(1), 1–19 (1994)

    Article  Google Scholar 

  8. Tversky, B.: Cognitive maps, cognitive collages, and spatial mental models. In: Spatial Information Theory A Theoretical Basis for GIS, pp. 14–24. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  9. Harrell, W.A., Bowlby, J.W., Hall-Hoffarth, D.: Directing wayfinders with maps: The effects of gender, age, route complexity, and familiarity with the environment. The Journal of Social Psychology 140(2), 169–178 (2000)

    Article  Google Scholar 

  10. Morganti, F., Carassa, A., Geminiani, G.: Planning optimal paths: A simple assessment of survey spatial knowledge in virtual environments. Computers in Human Behavior 23(4), 1982–1996 (2007)

    Article  Google Scholar 

  11. Rovine, M.J., Weisman, G.D.: Sketch-map variables as predictors of way-finding performance. Journal of Environmental Psychology 9(3), 217–232 (1989)

    Article  Google Scholar 

  12. Moeser, S.D.: Cognitive mapping in a complex building. Environment and Behavior 20(1), 21–49 (1988)

    Article  Google Scholar 

  13. Golledge, R.G.: Wayfinding behavior: Cognitive mapping and other spatial processes. JHU Press (1999)

    Google Scholar 

  14. Tversky, B.: What do sketches say about thinking. In: 2002 AAAI Spring Symposium, Sketch Understanding Workshop, Stanford University, AAAI Technical Report SS-02-08, pp. 148-151 (2002)

    Google Scholar 

  15. Skubic, M., Blisard, S., Bailey, C., Adams, J.A., Matsakis, P.: Qualitative analysis of sketched route maps: translating a sketch into linguistic descriptions. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 34(2), 1275–1282 (2004)

    Article  Google Scholar 

  16. Kopczynski, M., Sester, M.: Graph based methods for localisation by a sketch. In: Proceedings of the XXII International Cartographic Conference, ICCC 2005 (2005)

    Google Scholar 

  17. Kopczynski, M.: Efficient spatial queries with sketches. In: Proceedings of the ISPRS Technical Commission II Symposium, pp. 19–24 (2006)

    Google Scholar 

  18. Passini, R.: Spatial representations, a wayfinding perspective. Journal of Environmental Psychology 4(2), 153–164 (1984)

    Article  Google Scholar 

  19. Huynh, N.T., Doherty, S., Sharpe, B.: Gender Differences in the Sketch Map Creation Process. Journal of Maps 6(1), 270–288 (2010)

    Article  Google Scholar 

  20. Bell, S., Archibald, J.: Sketch Mapping and Geographic Knowledge: What Role for Drawing Ability? In: Workshop of an Interdisciplinary Approach to Understanding and Processing Sketch Maps in Conjunction with COSIT 2011, Belfast, ME, vol. 42, pp. 1–10 (2011)

    Google Scholar 

  21. Stange, H., Liebig, T., Hecker, D., Andrienko, G., Andrienko, N.: Analytical workflow of monitoring human mobility in big event settings using Bluetooth. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness, pp. 51–58. ACM (2011)

    Google Scholar 

  22. Zhou, Z., Chen, X., Chung, Y.C., He, Z., Han, T.X., Keller, J.M.: Activity analysis, summarization, and visualization for indoor human activity monitoring. Circuits and Systems for Video Technology. IEEE Transactions on Circuits and Systems for Video Technology 18(11), 1489–1498 (2008)

    Article  Google Scholar 

  23. Seifeldin, M., Youssef, M.: A deterministic large-scale device-free passive localization system for wireless environments. In: Proceedings of the 3rd International Conference on Pervasive Technologies Related to Assistive Environments, p. 51. ACM (2010)

    Google Scholar 

  24. Zhang, D., Liu, Y., Ni, L.M.: Rass: A real-time, accurate and scalable system for tracking transceiver-free objects. In: 2011 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 197–204. IEEE (2011)

    Google Scholar 

  25. Hashemian, M.S., Stanley, K.G., Knowles, D.L., Calver, J., Osgood, N.D.: Human network data collection in the wild: the epidemiological utility of micro-contact and location data. In: Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium, pp. 255–264. ACM (2012)

    Google Scholar 

  26. Bell, S., Jung, W.R., Krishnakumar, V.: WiFi-based enhanced positioning systems: accuracy through mapping, calibration, and classification. In: Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness, pp. 3–9. ACM (2010)

    Google Scholar 

  27. Jung, W.R., Bell, S., Petrenko, A., Sizo, A.: Potential risks of WiFi-based indoor positioning and progress on improving localization functionality. In: Proceedings of the Fourth ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness, pp. 13–20. ACM (2012)

    Google Scholar 

  28. Zandbergen, P.A.: Comparison of WiFi positioning on two mobile devices. Journal of Location Based Services 6(1), 35–50 (2012)

    Article  Google Scholar 

  29. Curran, K., Furey, E., Lunney, T., Santos, J., Woods, D., McCaughey, A.: An evaluation of indoor location determination technologies. Journal of Location Based Services 5(2), 61–78 (2011)

    Article  Google Scholar 

  30. Jan, S.S., Hsu, L.T., Tsai, W.M.: Development of an Indoor location based service test bed and geographic information system with a wireless sensor network. Sensors 10(4), 2957–2974 (2010)

    Article  Google Scholar 

  31. Gu, Y., Lo, A., Niemegeers, I.: A survey of indoor positioning systems for wireless personal networks. IEEE Communications Surveys & Tutorials 11(1), 13–32 (2009)

    Article  Google Scholar 

  32. Bahl, P., Padmanabhan, V.N.: RADAR: An in-building RF-based user location and tracking system. In: Proceedings of the INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 775–784. IEEE (2000)

    Google Scholar 

  33. King, T., Kopf, S., Haenselmann, T., Lubberger, C., Effelsberg, W.: Compass: A probabilistic indoor positioning system based on 802.11 and digital compasses. In: Proceedings of the 1st International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization, pp. 34–40. ACM (2006)

    Google Scholar 

  34. Chen, Y., Yang, Q., Yin, J., Chai, X.: Power-efficient access-point selection for indoor location estimation. IEEE Transactions on Knowledge and Data Engineering 18(7), 877–888 (2006)

    Article  Google Scholar 

  35. Wei, T., Bell, S.: Impact of Indoor Location Information Reliability on Users’ Trust of an Indoor Positioning System. Geographic Information Science, 258–269 (2012)

    Google Scholar 

  36. Li, B., Salter, J., Dempster, A.G., Rizos, C.: Indoor positioning techniques based on wireless LAN. In: First IEEE International Conference on Wireless Broadband and Ultra Wideband Communications, Sydney, Australia, pp. 13–16 (2006)

    Google Scholar 

  37. Ladd, A.M., Bekris, K.E., Rudys, A., Kavraki, L.E., Wallach, D.S.: Robotics-based location sensing using wireless ethernet. Wireless Networks 11(1-2), 189–204 (2005)

    Article  Google Scholar 

  38. Harle, R.: A Survey of Indoor Inertial Positioning Systems for Pedestrians, Communications Surveys & Tutorials, pp. 1–13. IEEE (2013)

    Google Scholar 

  39. Scott, C.: Improved GPS positioning for motor vehicles through map matching. In: Proceedings of the 7th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1994), pp. 1391–1400 (1994)

    Google Scholar 

  40. Zhang, X., Wang, Q., Wan, D.: The relationship among vehicle positioning performance, map quality, and sensitivities and feasibilities of map-matching algorithms. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 468–473. IEEE (2003)

    Google Scholar 

  41. Quddus, M., Ochieng, W., Zhao, L., Noland, R.: A general map matching algorithm for transport telematics applications. GPS Solutions 7(3), 157–167 (2003)

    Article  Google Scholar 

  42. Gilliéron, P.Y., Merminod, B.: Personal navigation system for indoor applications. In: 11th IAIN World Congress, pp. 21–24 (2003)

    Google Scholar 

  43. Lorenz, B., Ohlbach, H., Stoffel, E.P.: A hybrid spatial model for representing indoor environments. Web and Wireless Geographical Information Systems, 102–112 (2006)

    Google Scholar 

  44. Hölscher, C., Vrachliotis, G., Meilinger, T.: The floor strategy: Wayfinding cognition in a multi-level building. In: Proceedings of the 5th International Space Syntax Symposium, pp. 823–824 (2006)

    Google Scholar 

  45. Thill, J.C., Dao, T.H.D., Zhou, Y.: Traveling in the three-dimensional city: applications in route planning, accessibility assessment, location analysis and beyond. Journal of Transport Geography 19(3), 405–421 (2011)

    Article  Google Scholar 

  46. Taneja, S., Akinci, B., Garrett, J.H., Soibelman, L., East, B.: Transforming IFC-Based Building Layout Information into a Geometric Topology Network for Indoor Navigation Assistance. In: Computing in Civil Engineering, pp. 315–322. ASCE (2011)

    Google Scholar 

  47. Becker, T., Nagel, C., Kolbe, T.H.: A multilayered space-event model for navigation in indoor spaces. 3D Geo-Information Sciences, 61–77 (2009)

    Google Scholar 

  48. Werner, M., Kessel, M.: Organisation of Indoor Navigation data from a data query perspective. In: Ubiquitous Positioning Indoor Navigation and Location Based Service (UPINLBS), pp. 1–6. IEEE (2010)

    Google Scholar 

  49. Pu, S., Zlatanova, S.: Evacuation route calculation of inner buildings. In: Geo-information for Disaster Management, pp. 1143–1161. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  50. Lee, D.-T.: Medial axis transformation of a planar shape. IEEE Transactions on Pattern Analysis and Machine Intelligence, 363–369 (1982)

    Google Scholar 

  51. Wallgrün, J.O.: Autonomous construction of hierarchical voronoi-based route graph representations. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS (LNAI), vol. 3343, pp. 413–433. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  52. Lee, J.: A spatial access-oriented implementation of a 3-D GIS topological data model for urban entities. GeoInformatica 8(3), 237–264 (2004)

    Article  Google Scholar 

  53. Lee, J.: 3D data model for representing topological relations of urban features. In: Proceedings of the 21st Annual ESRI International User Conference, San Diego, CA, USA (2001)

    Google Scholar 

  54. Lee, J., Kwan, M.P.: A combinatorial data model for representing topological relations among 3D geographical features in micro‐spatial environments. International Journal of Geographical Information Science 19(10), 1039–1056 (2005)

    Article  Google Scholar 

  55. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Petrenko, A., Bell, S., Stanley, K., Qian, W., Sizo, A., Knowles, D. (2013). Human Spatial Behavior, Sensor Informatics, and Disaggregate Data. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds) Spatial Information Theory. COSIT 2013. Lecture Notes in Computer Science, vol 8116. Springer, Cham. https://doi.org/10.1007/978-3-319-01790-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01790-7_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01789-1

  • Online ISBN: 978-3-319-01790-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics