Skip to main content

Dynamic Channel Selection for Cognitive Femtocells

  • Chapter
  • First Online:
Cognitive Radio and Networking for Heterogeneous Wireless Networks

Abstract

The ever-growing demand for mobile broadband is pushing towards the utilization of small cells, including metrocells, picocells and femtocells. In particular, the deployment of femtocells introduces significant challenges. First, the massive number of expected femtocells cannot be deployed using the traditional planning and optimization techniques. This leads to uncoordinated deployment by the end-user. Second, the high density of femtocells, including vertical reuse, leads to very different inter-cell interference patterns than the ones traditionally considered in cellular networks. And last, but not least, the possibility of having closed-subscriber-groups aggravates the inter-cell interference problems. In order to tackle these issues we consider the implementation of some aspects of cognitive radio technology into femtocells, leading to the concept of cognitive femtocells. This chapter focuses on state-of-art techniques to manage the radio resources in order to cope with inter-cell interference in cognitive femtocells. Different techniques are presented as examples of gradually increasing sophistication of the cognitive femtocells, allowing for dynamic channel allocation, dynamic reuse and negotiated reuse based on information exchanged with neighbor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Originally, the term coalition was used instead of cooperative set. However, the term was avoided here in order to prevent confusion with the usual definition of coalition in GT, which typically only allows each player to be member of a single coalition [21].

References

  1. 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA): Further advancements for E-UTRA physical layer aspects. Technical report 36.814 v9.0.0, 2010

    Google Scholar 

  2. Ahmed, F., Tirkkonen, O., Peltomäki, M., Koljonen, J.-M., Yu, C.-H., Alava, M.: Distributed graph coloring for self-organization in LTE networks. JECE 2010, 5:1–5:10 (2010)

    Google Scholar 

  3. Andrews, J.G., Claussen, H., Dohler, M., Rangan, S., Reed, M.C.: Femtocells: past, present, and future. IEEE J. Sel. Areas Commun. 30(3), 497–508 (2012)

    Article  Google Scholar 

  4. Claussen, H., Ho, L.T.W., Samuel, L.G.: Financial analysis of a pico-cellular home network deployment. In: IEEE ICC, Glasgow (2007)

    Google Scholar 

  5. da Costa, G.W.O.: Dynamic spectrum sharing among femtocells – coping with spectrum scarcity in 4G and beyond. PhD thesis, Radio Access Technology Section, Department of Electronic Systems, Aalborg University (2012)

    Google Scholar 

  6. da Costa, G.W.O., Cattoni, A.F., Kovacs, I.Z., Mogensen, P.E.: A fully distributed method for dynamic spectrum sharing in femtocells. In: 2012 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Paris, pp. 87–92 (2012)

    Google Scholar 

  7. Ellenbeck, J., Hartmann, C., Berlemann, L.: Decentralized inter-cell interference coordination by autonomous spectral reuse decisions. In: 14th European Wireless Conference (EW), Prague, pp. 1–7 (2008)

    Google Scholar 

  8. Etkin, R., Parekh, A., Tse, D.: Spectrum sharing for unlicensed bands. IEEE J. Sel. Areas Commun. 25(3), 517–528 (2007)

    Article  Google Scholar 

  9. Friedman, J.W., Mezzetti, C.: Learning in games by random sampling. J. Econ. Theory 98(1), 55–84 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fudenberg, D., Tirole, J.: Game Theory. MIT, Cambridge (1991)

    Google Scholar 

  11. Garcia, L.G.U., Pedersen, K.I., Mogensen, P.E.: Autonomous component carrier selection: interference management in local area environments for LTE-advanced. IEEE Commun. Mag. 47(9), 110–116 (2009)

    Article  Google Scholar 

  12. Garcia, L.G.U., da Costa, G.W.O., Cattoni, A.F., Pedersen, K.I., Mogensen, P.E.: Self-organizing coalitions for conflict evaluation and resolution in femtocells. In: 2010 IEEE Global Telecommunications Conference (GLOBECOM), Miami, pp. 1–6 (2010)

    Google Scholar 

  13. Garcia, L.G.U., Kovacs, I.Z., Pedersen, K.I., da Costa, G.W.O., Mogensen, P.E.: Autonomous component carrier selection for 4G femtocells – a fresh look at an old problem. IEEE J. Sel. Areas Commun. 30(3), 525–537 (2012)

    Article  Google Scholar 

  14. Goldsmith, A.: Wireless Communications, chapter 4, pp. 99–125. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  15. Holma, H., Toskala, A.: LTE for UMTS – OFDMA and SC-FDMA based radio access. Wiley, Chichester (2009)

    Google Scholar 

  16. IST-4-027756 WINNER II, IST-WINNER D1.1.2: “WINNER II Channel Models”, ver 1.1. Technical report, Winner II (2007)

    Google Scholar 

  17. Menon, R., MacKenzie, A.B., Buehrer, R.M., Reed, J.H.: A game-theoretic framework for interference avoidance in ad hoc networks. In: IEEE Global Telecommunications Conference (GLOBECOM’06), San Francisco, pp. 1–6, (2006)

    Google Scholar 

  18. Mogensen, P., Na, W., Kovacs, I.Z., Frederiksen, F., Pokhariyal, A., Pedersen, K.I., Kolding, T., Hugl, K., Kuusela, M.: LTE capacity compared to the Shannon bound. In: IEEE 65th Vehicular Technology Conference (VTC2007), Spring, Dublin, pp. 1234–1238 (2007)

    Google Scholar 

  19. Narayanan, L.: Channel assignment and graph multicoloring. In: Handbook of Wireless Networks and Mobile Computing, vol. 8, pp. 71–94. Wiley, New York (2002)

    Google Scholar 

  20. Pérez, D.L., et al.: OFDMA femtocells: a roadmap on interference avoidance. IEEE Commun. Mag. 47(9), 41–48 (2009)

    Article  Google Scholar 

  21. Saad, W., et al.: Coalitional game theory for communication networks: a tutorial. IEEE Signal Process. Mag. 26(5), 77–99 (2009)

    Article  Google Scholar 

  22. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  23. Suris, J.E., Dasilva, L.A., Han, Z., Mackenzie, A.B., Komali, R.S.: Asymptotic optimality for distributed spectrum sharing using bargaining solutions. IEEE Trans. Wirel. Commun. 8(10), 5225–5237 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Wagner Oliveira da Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

da Costa, G.W.O., Cattoni, A.F., Mogensen, P.E., da Silva, L.A. (2015). Dynamic Channel Selection for Cognitive Femtocells. In: Di Benedetto, MG., Cattoni, A., Fiorina, J., Bader, F., De Nardis, L. (eds) Cognitive Radio and Networking for Heterogeneous Wireless Networks. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-01718-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01718-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01717-4

  • Online ISBN: 978-3-319-01718-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics