Skip to main content

Computing Efficiently Spectral-Spatial Classification of Hyperspectral Images on Commodity GPUs

  • Chapter
  • First Online:
Recent Advances in Knowledge-based Paradigms and Applications

Abstract

The high computational cost of the techniques for segmentation and classification of hyperspectral images makes them good candidates for parallel processing, in particular, for computing on Graphics Processing Units (GPUs). In this paper an efficient projection on the GPUs for the spectral–spatial classification of hyperspectral images using the Compute Unified Device Architecture (CUDA) for NVIDIA devices is presented. A watershed transform is applied after reducing the hyperspectral image to one band through the calculation of a morphological gradient, while the spectral classification is carried out by Support Vector Machine (SVMs). The results are combined with an adaptive majority vote. The different computational stages are concatenated in a pipeline that minimizes the data transfer between the main memory of the host computer and the global memory of the graphics device to maximize the computational throughput. The memory hierarchy and the thousands of threads available in this architecture are efficiently exploited. It is possible to study different data partitioning strategies and thread block arrangements in order to promote concurrent execution of a large number of threads. The objective is to efficiently exploit commodity hardware with the aim of achieving real-time execution for on-board processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See CUBLAS at https://developer.nvidia.com/cublas

  2. 2.

    Hyperspectral Remote Sensing Scenes available at http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes

References

  1. Plaza, A., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J.C., Trianni, G.: Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 113, S110–S122 (2009)

    Article  Google Scholar 

  2. van der Meer, F.D., van der Werff, H.M., van Ruitenbeek, F.J., Hecker, C.A., Bakker, W.H., Noomen, M.F., van der Meijde, M., Carranza, E.J.M., de Smeth, J.B., Woldai, T.: Multi- and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Observ. Geoinform. 14(11), 112–128 (2012)

    Article  Google Scholar 

  3. Gualtieri, J.A., Cromp, R.F.: Support vector machines for hyperspectral remote sensing classification. Proc. SPIE 3584, 221–232 (1998)

    Article  Google Scholar 

  4. Jia, X., Richards, J.A., Ricken, D.E.: Remote Sensing Digital Image Analysis: An Introduction. Springer Verlag, Berlin (1999)

    Google Scholar 

  5. Varshney, P. K., Arora, M. K. (eds.).: Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data. Springer Verlag, Berlin (2004)

    Google Scholar 

  6. Fauvel, M., Chanussot, J., Benediktsson, J.A., Sveinsson, J.R.: Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 46(10), 3804–3814 (2008)

    Article  Google Scholar 

  7. Tarabalka, Y., Benediktsson, J.A. and Chanussot, J.: Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques. Geosci. Remote Sens. IEEE Trans. 47(8) , 2973–2987 (2009)

    Google Scholar 

  8. Tarabalka, Y., Chanussot, J., Benediktsson, J.A.: Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recogn. 43(7), 2367–2379 (2010)

    Article  MATH  Google Scholar 

  9. Fauvel, M.: Spectral and spatial methods for the classification of urban remote sensing data, Ph.D. Dissertation, Grenoble Institute of Technology, Grenoble (2007)

    Google Scholar 

  10. Farag, A.A., Mohamed, R.M., El-Baz, A.: A unified framework for MAP estimation in remote sensing image segmentation. Geosci. Remote Sens. IEEE Trans. 43(7), 1617–1634 (2005)

    Article  Google Scholar 

  11. Couprie, C., Grady, L., Najman, L., Talbot, H.: Power watershed: a unifying graph-based optimization framework. Pattern Anal. Mach. Intell. IEEE Trans. 33(7), 1384–1399 (2011)

    Article  Google Scholar 

  12. Tarabalka, Y., Benediktsson, J.A. and Chanussot, J.: Classification of hyperspectral data using support vector machines and adaptive neighborhoods. In: Proceedings of 6th EARSeL SIG IS, Workshop (2009)

    Google Scholar 

  13. Bernard, K., Tarabalka, Y., Angulo, J., Chanussot, J., Benediktsson, J.A.: Spectral spatial classification of hyperspectral data based on a stochastic minimum spanning forest approach. Image Process. IEEE Trans. 21(4), 2008–2021 (2012)

    Article  MathSciNet  Google Scholar 

  14. Vincent, L., Soille, P.: Watersheds in digital spaces: an eficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13, 583–598 (1991)

    Article  Google Scholar 

  15. Plaza, A., Plaza, J., Vegas, H.: Improving the performance of hyperspectral image and signal processing algorithms using parallel, distributed speciallized hardware-based systems. J. Signal Proces. Syst. 61(3), 293–315 (2010)

    Article  Google Scholar 

  16. González, C., Sánchez, S., Paz, A., Resano, J., Mozos, D., Plaza, A.: Use of FPGA or GPU-based architectures for remotely sensed hyperspectral image processing. Integr. VLSI J. 46(2), 89–103 (2013)

    Article  Google Scholar 

  17. Tarabalka, Y., Haavardsholm, T.V., Kåsen, I., Skauli, T.: Real-time anomaly detection in hyperspectral images using multivariate normal mixture models and GPU processing. J. Real Time Image Process. 4(3), 287–300 (2009)

    Article  Google Scholar 

  18. Heras, D. B., Argüello, F., Gómez, J. L., Becerra, J. A., Duro, R. J.: Towards real-time hyperspectral image processing, a GP-GPU implementation of target identification. In: 2011 IEEE 6th Internatioonal Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), vol. 1 pp. 316–321 (2011)

    Google Scholar 

  19. Priego, B., Souto, D., Bellas, F., Duro, R.J.: Unsupervised segmentation of hyperspectral images through evolved cellular automata. Adv. Knowl. Based Intell. Inform. Eng. Syst. 243, 2160–2169 (2012)

    Google Scholar 

  20. Quesada-Barriuso, P., Argüello, F., Heras, D.B.: Efficient segmentation of hyperspectral images on commodity GPUs. Adv. Knowl. Based Intell. Inform. Eng. Syst. 243, 2130–2139 (2012)

    Google Scholar 

  21. Christophe, E., Michel, J., Inglada, J.: Remote sensing processing: from multicore to GPU. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 4(3), 643–652 (2011)

    Article  Google Scholar 

  22. Bernabé, S., Plaza, A., Reddy Marpu, P., Benediktsson, J.A.: A new parallel tool for classification of remotely sensed imagery. Comput. Geosci. 46, 208–218 (2012)

    Article  Google Scholar 

  23. NVIDIA Corporation: NVIDIA CUDA C Programming Guide 4.2, Santa Clara (2011)

    Google Scholar 

  24. NVIDIA Corporation: NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110 Whitepaper (2012)

    Google Scholar 

  25. NVIDIA Corporation: CUDA C Best Practices Guide (2012)

    Google Scholar 

  26. Gege, P., Beran, D., Mooshuber, W., Schulz, J. and Van Der Piepen, H.: System analysis and performance of the new version of the imaging spectrometer rosis, in Proceedings of the First EARSeL Workshop on Imaging Spectroscopy. University of Zurich Remote Sensing Laboratories, pp. 29–35 (1998)

    Google Scholar 

  27. Green, R.O., Eastwood, M.L., Sarture, C.M., Chrien, T.G., Aronsson, M., Chippendale, B.J., Faust, J.A., Pavri, B.E., Chovit, C.J., Solis, M.S., Olah, M.R., Williams, O.: Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 65(3), 227–248 (1998)

    Google Scholar 

  28. Camps-Valls, G., Bruzzone, L.: Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 43(6), 1351–1362 (2005)

    Google Scholar 

  29. Evans, A. and Liu, X.: A morphological gradient approach to color edge detection. Image Process IEEE Trans. 15(6), 1454–1463 (2006)

    Google Scholar 

  30. Roerdink, J.B.T.M., Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fund. Inform. 41(1–2), 187–228 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Meyer, F.: Topographic distance and watershed lines. Math. Morphol. Appl. Signal Process. 38(1), 113–125 (1994)

    MATH  Google Scholar 

  32. Galilée, B., Mamalet, F., Renaudin, M., Coulon, P.Y.: Parallel asynchronous watershed algorithm-architecture. IEEE Trans. Paral. Distrib. Syst. 18(1), 44–56 (2007)

    Google Scholar 

  33. Nehaniv, C.L.: Evolution in asynchronous cellular automata. In: Proceedings of the 8th International Conference on Artificial life, MIT Press, pp. 65–73 (2003)

    Google Scholar 

  34. Quesada-Barriuso, P., Heras, D.B. and Argüello, F.: Efficient GPU asynchronous implementation of a watershed algorithm based on cellular automata. In: Proceedings of IEEE International Symposium on Parallel and Distributed Processing with Applications, pp. 79–86 (2012)

    Google Scholar 

  35. Boyer, R.S., Moore, J.S.: MJRTY - a fast majority vote algorithm, In: Boyer, R. S. (ed.) Automated Reasoning 1 Automated Reasoning Series, Springer, Netherlands, pp. 105–117 (1991)

    Google Scholar 

  36. Santos, A., Araújo, A., Menotti, D.: Combining multiple approaches for accuracy improvement in remote sensed hyperspectral images classification.In: Workshop of Thesis and Dissertations - XXV Conference on Graphics, Patterns and Images, pp. 54–59 (2012)

    Google Scholar 

  37. Balasalle, J., López, M.A., Rutherford, M.J.: Optimizing memory access patterns for cellular automata on GPUs. In: Hwu W. W. (ed.) GPU Computing Gems, Jade Edition. Morgan Kaufmann Publishers Inc., San Francisco, pp. 67–75 (2012)

    Google Scholar 

  38. Athanasopoulos, A., Dimou, A., Mezaris, V. and Kompatsiaris, I.: GPU acceleration for support vector machines, In: Proceedings of 12th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS 2011), Delft (2011)

    Google Scholar 

  39. Carpenter, A.: CUSVM: a CUDA implementation of support vector classification and regression, patternsonscreen (2009)

    Google Scholar 

  40. Catanzaro, B., Sundaram, N. and Keutzer, K.: Fast support vector machine training and classification on graphics processors. In: Proceedings of the 25th International Conference on Machine learning - ICML’08, pp. 104–111 (2008)

    Google Scholar 

  41. Herrero-López, S., Williams, J. R. and Sanchez, A.: Parallel multiclass classification using SVMs on GPUs. In: Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units, ACM, pp. 2–11 (2010)

    Google Scholar 

  42. Li, Q., Salman, R., Test, E., Strack, R., Kecman, V.: GPUSVM: a comprehensive CUDA based support vector machine package. Central Eur. J. Comput. Sci. 1(4), 387–405 (2011)

    Article  MATH  Google Scholar 

  43. Harris, M.: Optimizing parallel reduction in CUDA. NVIDIA Developer Technology, (2007)

    Google Scholar 

  44. Hawick, K.A., Leist, A., Playne, D.P.: Parallel graph component labelling with GPUs and CUDA. Parallel Comput. 36(12), 655–678 (2010)

    Article  MATH  Google Scholar 

  45. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)

    Google Scholar 

  46. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Ministry of Science and Innovation, Government of Spain, cofounded by the FEDER funds of European Union, under contract TIN 2010-17541, and by Xunta de Galicia, Program for Consolidation of Competitive Research Groups ref. 2010/28. Pablo acknowledges financial support from the Ministry of Science and Innovation, Government of Spain, under a MICINN-FPI grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Quesada-Barriuso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Quesada-Barriuso, P., Argüello, F., Heras, D.B. (2014). Computing Efficiently Spectral-Spatial Classification of Hyperspectral Images on Commodity GPUs. In: Tweedale, J., Jain, L. (eds) Recent Advances in Knowledge-based Paradigms and Applications. Advances in Intelligent Systems and Computing, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-319-01649-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01649-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01648-1

  • Online ISBN: 978-3-319-01649-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics