Skip to main content

A Contribution to the Outflow Boundary Conditions for Navier-Stokes Time-Splitting Methods

  • Conference paper
  • First Online:
Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 95))

  • 1727 Accesses

Abstract

We present in this paper a numerical scheme for incompressible Navier-Stokes equations with open boundary conditions, in the framework of the pressure and velocity correction schemes. In Poux et al. (J Comput Phys 230:4011–4027, 2011), the authors presented an almost second-order accurate version of the open boundary condition with a pressure-correction scheme in finite volume framework. This paper proposes an extension of this method in spectral element method framework for both pressure- and velocity-correction schemes. A new way to enforce this type of boundary condition is proposed and provides a pressure and velocity convergence rate in space and time higher than with the present state of the art. We illustrate this result by computing some numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ideally, χ = 1 but as Guermond proved [8], for stability issues, χ is necessarily strictly lower than 2μd.

References

  1. Arrow K. J., Hurwicz L., Uzawa H., Studies in linear and non-linear programming, Stanford University Press, Stanford, (1958).

    MATH  Google Scholar 

  2. Chorin A., Numerical solution of the Navier-Stokes equations, Mathematics of Computation, 22, 745–762, (1968).

    Article  MathSciNet  MATH  Google Scholar 

  3. Deville M. O., Fischer P. F., Mund E.H., High-Order Methods for Incompressible Fluid Flow, Cambridge University Press, Cambridge, (2002).

    Book  MATH  Google Scholar 

  4. Engquist B., Absorbing Boundary Conditions for Numerical Simulation of Waves, Proceedings of the National Academy of Sciences, 74, 1765–1766, (1977).

    Article  MathSciNet  MATH  Google Scholar 

  5. Fortin M., Glowinski R., Méthodes de Lagrangien Augmenté - Applications à la résolution numérique de problémes aux limites, Dunod, Paris, (1982).

    Google Scholar 

  6. Goda K., A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows, Journal of Computational Physics, 30, 76–95, (1979).

    Article  MATH  Google Scholar 

  7. Guermond J. L., Calculation of Incompressible Viscous Flows by an Unconditionally Stable Projection FEM, Journal of Computational Physics, 132, 12–33, (1997).

    Article  MathSciNet  MATH  Google Scholar 

  8. Guermond J. L., Minev P., Shen J., Error Analysis of Pressure-Correction Schemes for the Time-Dependent Stokes Equations with Open Boundary Conditions. SIAM Journal on Numerical Analysis, 43, 239–258, (2005).

    Article  MathSciNet  MATH  Google Scholar 

  9. Guermond J. L., Minev P., Shen J., An overview of projection methods for incompressible flows, Computer Methods in Applied Mechanics and Engineering, 195, 6011–6045, (2006).

    Article  MathSciNet  MATH  Google Scholar 

  10. Guermond J. L., Shen J., Velocity-correction projection methods for incompressible flows, SIAM Journal on Numerical Analysis, 41, 112–134, (2004).

    Article  MathSciNet  Google Scholar 

  11. Karniadakis G. E., Israeli M., Orszag S. A., High-order splitting methods for the incompressible Navier-Stokes equation, Journal of Computational Physics, 97, 414–443, (1991).

    Article  MathSciNet  MATH  Google Scholar 

  12. Leriche E., Labrosse G., High-order direct Stokes solvers with or without temporal splitting: numerical investigations of their comparative properties, SIAM Journal on Scientific Computing, 22, 1386–1410, (2000).

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu J., Open and traction boundary conditions for the incompressible NavierStokes equations. Journal of Computational Physics, 228, 7250–7267, (2009).

    Article  MathSciNet  MATH  Google Scholar 

  14. Orlanski I., A simple boundary condition for unbounded hyperbolic flows, Journal of Computational Physics, 21, 251–269,1976.

    Article  MATH  Google Scholar 

  15. Orszag S. A., Israeli M., Deville M. O., Boundary conditions for incompressible flows. Journal of Scientific Computing, 1, 75–111, (1986).

    Article  MATH  Google Scholar 

  16. Poux A., Glockner S., Azaïez M., Improvements on open and traction boundary conditions for NavierStokes time-splitting methods, Journal of Computational Physics, 230, 4011–4027, (2011).

    Article  MathSciNet  MATH  Google Scholar 

  17. Shen J., On error estimates of the projection methods for the Navier-Stokes equations: Second-order schemes, Mathematics of Computation, 65, 1039–1066, (1996).

    Article  MathSciNet  MATH  Google Scholar 

  18. Témam R., Navier Stokes Equations: Theory and Numerical Analysis, North-Holland Publishing Company, Amsterdam, (1984).

    MATH  Google Scholar 

  19. Timmermans L. J. P., Minev P. D., Van De Voss F. N., An approximate projection scheme for incompressible flow using spectral elements, International Journal for Numerical Methods in Fluids, 22, 673–688, (1996).

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The second author would like to thank Professor Claudio Canuto for many discussions which allowed improving the presentation of this method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ahusborde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ahusborde, E., Azaïez, M., Glockner, S., Poux, A. (2014). A Contribution to the Outflow Boundary Conditions for Navier-Stokes Time-Splitting Methods. In: Azaïez, M., El Fekih, H., Hesthaven, J. (eds) Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012. Lecture Notes in Computational Science and Engineering, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-319-01601-6_5

Download citation

Publish with us

Policies and ethics