Skip to main content

Historical Overview of Gene Discovery Methodologies in Type 2 Diabetes

  • Chapter
  • First Online:
The Genetics of Type 2 Diabetes and Related Traits

Abstract

This initial chapter presents a historical snapshot of the various approaches utilized to discover genes implicated in the pathogenesis of type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrechtsen A, Grarup N, Li Y et al (2013) Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes. Diabetologia 56:298–310. doi:10.1007/s00125-012-2756-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almind K, Bjørbaek C, Vestergaard H et al (1993) Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus. Lancet 342:828–832

    Article  CAS  PubMed  Google Scholar 

  • Babenko AP, Polak M, Cavé H et al (2006) Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med 355:456–466. doi:10.1056/NEJMoa055068

    Article  CAS  PubMed  Google Scholar 

  • Bell GI, Xiang KS, Newman MV et al (1991) Gene for non-insulin-dependent diabetes mellitus (maturity-onset diabetes of the young subtype) is linked to DNA polymorphism on human chromosome 20q. Proc Natl Acad Sci USA 88:1484–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett CL, Christie J, Ramsdell F et al (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27:20–21. doi:10.1038/83713

    Article  CAS  PubMed  Google Scholar 

  • Bonnefond A, Philippe J, Durand E et al (2012) Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene. PLoS ONE 7, e37423. doi:10.1371/journal.pone.0037423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnefond A, Vaillant E, Philippe J et al (2013) Transcription factor gene MNX1 is a novel cause of permanent neonatal diabetes in a consanguineous family. Diabetes Metab 39:276–280. doi:10.1016/j.diabet.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  • Bonnycastle LL, Chines PS, Hara T et al (2013) Autosomal dominant diabetes arising from a Wolfram syndrome 1 mutation. Diabetes 62:3943–3950. doi:10.2337/db13-0571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borowiec M, Liew CW, Thompson R et al (2009) Mutations at the BLK locus linked to maturity onset diabetes of the young and beta-cell dysfunction. Proc Natl Acad Sci USA 106:14460–14465. doi:10.1073/pnas.0906474106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman P, Flanagan SE, Edghill EL et al (2012) Heterozygous ABCC8 mutations are a cause of MODY. Diabetologia 55:123–127. doi:10.1007/s00125-011-2319-x

    Article  CAS  PubMed  Google Scholar 

  • Deeb SS, Fajas L, Nemoto M et al (1998) A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 20:284–287. doi:10.1038/3099

    Article  CAS  PubMed  Google Scholar 

  • Delépine M, Nicolino M, Barrett T et al (2000) EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet 25:406–409. doi:10.1038/78085

    Article  PubMed  Google Scholar 

  • Flanagan SE, De Franco E, Lango Allen H et al (2014) Analysis of transcription factors key for mouse pancreatic development establishes NKX2-2 and MNX1 mutations as causes of neonatal diabetes in man. Cell Metab 19:146–154. doi:10.1016/j.cmet.2013.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Froguel P, Vaxillaire M, Sun F et al (1992) Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus. Nature 356:162–164. doi:10.1038/356162a0

    Article  CAS  PubMed  Google Scholar 

  • Froguel P, Zouali H, Vionnet N et al (1993) Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus. N Engl J Med 328:697–702. doi:10.1056/NEJM199303113281005

    Article  CAS  PubMed  Google Scholar 

  • Gloyn AL, Pearson ER, Antcliff JF et al (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350:1838–1849. doi:10.1056/NEJMoa032922

    Article  CAS  PubMed  Google Scholar 

  • Grant SFA, Thorleifsson G, Reynisdottir I et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38:320–323. doi:10.1038/ng1732

    Article  CAS  PubMed  Google Scholar 

  • Hani EH, Boutin P, Durand E et al (1998) Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of Type II diabetes mellitus in Caucasians. Diabetologia 41:1511–1515. doi:10.1007/s001250051098

    Article  CAS  PubMed  Google Scholar 

  • Horikawa Y, Iwasaki N, Hara M et al (1997) Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet 17:384–385. doi:10.1038/ng1297-384

    Article  CAS  PubMed  Google Scholar 

  • Igoillo-Esteve M, Genin A, Lambert N et al (2013) tRNA methyltransferase homolog gene TRMT10A mutation in young onset diabetes and primary microcephaly in humans. PLoS Genet 9, e1003888. doi:10.1371/journal.pgen.1003888

    Article  PubMed  PubMed Central  Google Scholar 

  • Inoue H, Tanizawa Y, Wasson J et al (1998) A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 20:143–148. doi:10.1038/2441

    Article  CAS  PubMed  Google Scholar 

  • Labay V, Raz T, Baron D et al (1999) Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness. Nat Genet 22:300–304. doi:10.1038/10372

    Article  CAS  PubMed  Google Scholar 

  • Lango Allen H, Flanagan SE, Shaw-Smith C et al (2012) GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet 44:20–22. doi:10.1038/ng.1035

    Article  Google Scholar 

  • Malecki MT, Jhala US, Antonellis A et al (1999) Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Genet 23:323–328. doi:10.1038/15500

    Article  CAS  PubMed  Google Scholar 

  • Meur G, Simon A, Harun N et al (2010) Insulin gene mutations resulting in early-onset diabetes: marked differences in clinical presentation, metabolic status, and pathogenic effect through endoplasmic reticulum retention. Diabetes 59:653–661. doi:10.2337/db09-1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris AP, Voight BF, Teslovich TM et al (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981–990. doi:10.1038/ng.2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neel JV (1976) Diabetes mellitus — a geneticist’s nightmare. In: Creutzfeldt W, Köbberling J, Neel JV (eds) The genetics of diabetes mellitus. Springer, Berlin, pp 1–11

    Chapter  Google Scholar 

  • Neve B, Fernandez-Zapico ME, Ashkenazi-Katalan V et al (2005) Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. Proc Natl Acad Sci USA 102:4807–4812. doi:10.1073/pnas.0409177102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Njølstad PR, Søvik O, Cuesta-Muñoz A et al (2001) Neonatal diabetes mellitus due to complete glucokinase deficiency. N Engl J Med 344:1588–1592. doi:10.1056/NEJM200105243442104

    Article  PubMed  Google Scholar 

  • Plengvidhya N, Kooptiwut S, Songtawee N et al (2007) PAX4 mutations in Thais with maturity onset diabetes of the young. J Clin Endocrinol Metab 92:2821–2826. doi:10.1210/jc.2006-1927

    Article  CAS  PubMed  Google Scholar 

  • Poulton CJ, Schot R, Kia SK et al (2011) Microcephaly with simplified gyration, epilepsy, and infantile diabetes linked to inappropriate apoptosis of neural progenitors. Am J Hum Genet 89:265–276. doi:10.1016/j.ajhg.2011.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raeder H, Johansson S, Holm PI et al (2006) Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nat Genet 38:54–62. doi:10.1038/ng1708

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Cabezas O, Minton JAL, Kantor I et al (2010) Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. Diabetes 59:2326–2331. doi:10.2337/db10-0011

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubio-Cabezas O, Jensen JN, Hodgson MI et al (2011) Permanent neonatal diabetes and enteric anendocrinosis associated with biallelic mutations in NEUROG3. Diabetes 60:1349–1353. doi:10.2337/db10-1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandhu MS, Weedon MN, Fawcett KA et al (2007) Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet 39:951–953. doi:10.1038/ng2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santer R, Schneppenheim R, Dombrowski A et al (1997) Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Nat Genet 17:324–326. doi:10.1038/ng1197-324

    Article  CAS  PubMed  Google Scholar 

  • Sellick GS, Barker KT, Stolte-Dijkstra I et al (2004) Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 36:1301–1305. doi:10.1038/ng1475

    Article  CAS  PubMed  Google Scholar 

  • Senée V, Chelala C, Duchatelet S et al (2006) Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet 38:682–687. doi:10.1038/ng1802

    Article  PubMed  Google Scholar 

  • Shaw-Smith C, De Franco E, Lango Allen H et al (2014) GATA4 mutations are a cause of neonatal and childhood-onset diabetes. Diabetes 63:2888–2894. doi:10.2337/db14-0061

    Article  CAS  PubMed  Google Scholar 

  • SIGMA Type 2 Diabetes Consortium, Estrada K, Aukrust I et al (2014) Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. JAMA 311:2305–2314. doi:10.1001/jama.2014.6511

    Article  Google Scholar 

  • Silander K, Mohlke KL, Scott LJ et al (2004) Genetic variation near the hepatocyte nuclear factor-4 alpha gene predicts susceptibility to type 2 diabetes. Diabetes 53:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Simaite D, Kofent J, Gong M et al (2014) Recessive mutations in PCBD1 cause a new type of early-onset diabetes. Diabetes 63:3557–3564. doi:10.2337/db13-1784

    Article  CAS  PubMed  Google Scholar 

  • Smith SB, Qu H-Q, Taleb N et al (2010) Rfx6 directs islet formation and insulin production in mice and humans. Nature 463:775–780. doi:10.1038/nature08748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinthorsdottir V, Thorleifsson G, Sulem P et al (2014) Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat Genet 46:294–298. doi:10.1038/ng.2882

    Article  CAS  PubMed  Google Scholar 

  • Stoffers DA, Ferrer J, Clarke WL, Habener JF (1997a) Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet 17:138–139. doi:10.1038/ng1097-138

    Article  CAS  PubMed  Google Scholar 

  • Stoffers DA, Zinkin NT, Stanojevic V et al (1997b) Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 15:106–110. doi:10.1038/ng0197-106

    Article  CAS  PubMed  Google Scholar 

  • Stone LM, Kahn SE, Fujimoto WY et al (1996) A variation at position -30 of the beta-cell glucokinase gene promoter is associated with reduced beta-cell function in middle-aged Japanese-American men. Diabetes 45:422–428

    Article  CAS  PubMed  Google Scholar 

  • Støy J, Edghill EL, Flanagan SE et al (2007) Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci USA 104:15040–15044. doi:10.1073/pnas.0707291104

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaxillaire M, Boccio V, Philippi A et al (1995) A gene for maturity onset diabetes of the young (MODY) maps to chromosome 12q. Nat Genet 9:418–423. doi:10.1038/ng0495-418

    Article  CAS  PubMed  Google Scholar 

  • Vaxillaire M, Bonnefond A, Froguel P (2012) The lessons of early-onset monogenic diabetes for the understanding of diabetes pathogenesis. Best Pract Res Clin Endocrinol Metab 26:171–187. doi:10.1016/j.beem.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  • Winckler W, Weedon MN, Graham RR et al (2007) Evaluation of common variants in the six known maturity-onset diabetes of the young (MODY) genes for association with type 2 diabetes. Diabetes 56:685–693. doi:10.2337/db06-0202

    Article  CAS  PubMed  Google Scholar 

  • Yamagata K, Furuta H, Oda N et al (1996a) Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature 384:458–460. doi:10.1038/384458a0

    Article  CAS  PubMed  Google Scholar 

  • Yamagata K, Oda N, Kaisaki PJ et al (1996b) Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature 384:455–458. doi:10.1038/384455a0

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Froguel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bonnefond, A., Shuldiner, A.R., Froguel, P. (2016). Historical Overview of Gene Discovery Methodologies in Type 2 Diabetes. In: Florez, J. (eds) The Genetics of Type 2 Diabetes and Related Traits. Springer, Cham. https://doi.org/10.1007/978-3-319-01574-3_1

Download citation

Publish with us

Policies and ethics