Skip to main content

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 27))

  • 1349 Accesses

Abstract

In this study, serveal different density functionals were applied to study the CO adsorption on Pt(111) clusters. When adding more contribution of HF exchange energy, it can be found that the HOMO energy is decreased and LUMO energy is increased, thus increasing the HOMO-LUMO energy gap. The accuracy of S-T excitation energy can also be largely improved when increasing the ratio of HF exchange energy. For CO adsorption at Pt7–3 cluster, most functionals predict that CO favors to adsorb at fcc site. Only when adding more than 40 % HF exchange energy, the M06HF, BMK, wB97 and M06-2X functionals can predict the top-site preference. For CO adsorption at Pt9–9–9 cluster, when adding more than 40 % HF exchange energy, the CO prefers to adsorb at top site than fcc site. Among these functionals, the M06HF strongly predicts the top-site preference. The chemical bonding analysis shows that the effects of σ-repulsion are reduced as the CO S-T excitation energy increasing, and the effect of reduction for CO at top site is more remarkable than that for CO at fcc site. Therefore, CO would more favor to adsorb at top site in those functionals which can give better CO S-T excitation energy. Although the opposite trend can be found for the π-attraction, the overall effect also supports CO favoring to adsorb at top site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dry ME (2002) Catal Today 71:227

    Article  CAS  Google Scholar 

  2. Somorjai GA (1994) Introduction to surface chemistry and catalysis. Wiley, New York

    Google Scholar 

  3. Abild-Pedersen F, Andersson MP (2007) Surf Sci 601:1747

    Article  CAS  Google Scholar 

  4. Bagus P, Nelin C, Bauschlicher C (1983) Phys Rev B 28:5423

    Article  CAS  Google Scholar 

  5. Delbecq F (1997) Surf Sci 389:L1131

    Article  CAS  Google Scholar 

  6. Dimakis N, Cowan M, Hanson G, Smotkin ES (2009) J Phys Chem C 113:18730

    Article  CAS  Google Scholar 

  7. Doll K (2004) Surf Sci 573:464

    Article  CAS  Google Scholar 

  8. Ertl G, Neumann M, Streit KM (1977) Surf Sci 64:393

    Article  CAS  Google Scholar 

  9. Feibelman PJ, Hammer B, Nørskov JK, Wagner F, Scheffler M, Stumpf R, Watwe R, Dumesic J (2001) J Phys Chem B 105:4018

    Article  CAS  Google Scholar 

  10. Föhlisch A, Nyberg M, Bennich P, Triguero L, Hasselström J, Karis O, Pettersson LGM, Nilsson A (2000) J Chem Phys 112:1946

    Article  Google Scholar 

  11. Föhlisch A, Nyberg M, Hasselström J, Karis O, Pettersson LG, Nilsson A (2000) Phys Rev Lett 85:3309

    Article  Google Scholar 

  12. Froitzheim H, Hopster H, Ibach H, Lehwald S (1977) Appl Phys 13:147

    Article  CAS  Google Scholar 

  13. German ED, Sheintuch M (2008) J Phys Chem C 112:14377

    Article  CAS  Google Scholar 

  14. Gil A, Clotea A, Ricart JM, Kresse G, García-Hernández M, Rösch N, Sautet P (2003) Surf Sci 530:71

    Article  CAS  Google Scholar 

  15. Giuffrida S, Barone G, Duca D (2009) J Chem Inf Model 49:1223

    Article  CAS  Google Scholar 

  16. Grinberg I, Yourdshahyan Y, Rappe AM (2002) J Chem Phys 117:2264

    Article  CAS  Google Scholar 

  17. Heyden BE, Bradshaw AM (1983) Surf Sci 125:787

    Article  Google Scholar 

  18. Hopster H, Ibach H (1978) Surf Sci 77:109

    Article  CAS  Google Scholar 

  19. Hu Q-M, Reuter K, Scheffler M (2007) Phys Rev Lett 98:1

    Google Scholar 

  20. Huang Y-W, Lee S-L (2010) Chem Phys Lett 492:98

    Article  CAS  Google Scholar 

  21. Jennison D, Schultz P, Sears M (1996) Phys Rev Lett 77:4828

    Article  CAS  Google Scholar 

  22. Kelemen SR, Fischer TE, Schwarz JA (1979) Surf Sci 81:440

    Article  Google Scholar 

  23. Kresse G, Gil A, Sautet P (2003) Phys Rev B 68:3

    Google Scholar 

  24. Liu W, Zhu YF, Lian JS, Jiang Q (2007) J Phys Chem C 111:1005

    Article  CAS  Google Scholar 

  25. Lynch M, Hu P (2000) Surf Sci 458:1

    Article  CAS  Google Scholar 

  26. Mason S, Grinberg I, Rappe A (2004) Phys Rev B 69:1

    Article  Google Scholar 

  27. McCabe RW, Schmidt LD (1977) Surf Sci 65:189

    Article  CAS  Google Scholar 

  28. Morikawa Y, Mortensen JJ, Hammer B, Nørskov JK (1997) Surf Sci 386:67

    Article  CAS  Google Scholar 

  29. Norton PR, Goodale JW, Selkirk EB (1979) Surf Sci 83:189

    Article  CAS  Google Scholar 

  30. Olsen RA, Philipsen PHT, Baerends EJ (2003) J Chem Phys 119:4522

    Article  CAS  Google Scholar 

  31. Orita H, Itoh N, Inada Y (2004) Chem Phys Lett 384:271

    Article  CAS  Google Scholar 

  32. Poelsema B, Palmer RL, Comsa G (1984) Surf Sci 136:1

    Article  CAS  Google Scholar 

  33. Seebauer EG, Kong ACF, Schmidt LD (1986) Surf Sci 176:134

    Article  CAS  Google Scholar 

  34. Steininger H, Lehwald S, Ibach H (1982) Surf Sci 123:264

    Article  CAS  Google Scholar 

  35. Stroppa A, Termentzidis K, Paier J, Kresse G, Hafner J (2007) Phys Rev B 76:1

    Article  Google Scholar 

  36. Surman M, Hagans PL, Wilson NE, Baily CJ, Russell AE (2002) Surf Sci 511:L303

    Article  CAS  Google Scholar 

  37. Wang Y, de Gironcoli S, Hush NS, Reimers JR (2007) J Am Chem Soc 129:10402

    Article  CAS  Google Scholar 

  38. Westerberg S, Wang C, Somorjai GA (2005) Surf Sci 582:137

    Article  CAS  Google Scholar 

  39. Wong YT, Hoffmann R (1991) J Phys Chem 95:859

    Article  CAS  Google Scholar 

  40. Yeo YY, Vattuone L, King DA (1997) J Chem Phys 106:392

    Article  CAS  Google Scholar 

  41. Fielicke A, Gruene P, Meijer G, Rayner DM (2009) Surf Sci 603:1427

    Article  CAS  Google Scholar 

  42. Collins DM, Spicer WE (1977) Surf Sci 69:85

    Article  CAS  Google Scholar 

  43. Philipsen P, van Lenthe E, Snijders J, Baerends E (1997) Phys Rev B 56:13556

    Article  CAS  Google Scholar 

  44. Alaei M, Akbarzadeh H, Gholizadeh H, de Gironcoli S (2008) Phys Rev B 77:085414

    Article  Google Scholar 

  45. Allyn CL, Gustafsson T, Plummer EW (1977) Chem Phys Lett 47:127

    Article  CAS  Google Scholar 

  46. Neumann H-JFaM (1988) Appl Phys A 47:3

    Article  Google Scholar 

  47. Rogozik J, Dose V (1986) Surf Sci 176:847

    Article  Google Scholar 

  48. Perdew JP, Yue W (1986) Phys Rev B 33:8800

    Article  Google Scholar 

  49. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  50. Perdew JP, Zunger A (1981) Phys Rev B 23:5048

    Article  CAS  Google Scholar 

  51. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  52. Ernzerhof M, Perdew JP (1998) J Chem Phys 109:3313

    Article  CAS  Google Scholar 

  53. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  54. Adamo C, Barone V (1999) J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  55. Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118:8207

    Article  CAS  Google Scholar 

  56. Zhao Y, Chen F (2008) J Multivar Anal 99:215

    Article  Google Scholar 

  57. Zhao Y, Schultz NE, Truhlar DG (2005) J Chem Phys 123:161103

    Article  Google Scholar 

  58. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364

    Article  Google Scholar 

  59. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  Google Scholar 

  60. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:13126

    Article  CAS  Google Scholar 

  61. Zhao Y, Truhlar DG (2006) J Phys Chem 110:5121

    Article  CAS  Google Scholar 

  62. Zhao Y, Truhlar DG (2008) J Chem Theory Comput 4:1849

    Article  CAS  Google Scholar 

  63. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  64. Frisch GW, Schlegel HB, Scuseria GE, Robb MA, Pople JA et al Gaussian 09, Revision A.1 (Gaussian Inc, Wallingford CT2009)

    Google Scholar 

  65. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  66. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  67. Becke AD (1996) J Chem Phys 104:1040

    Article  CAS  Google Scholar 

  68. Becke AD (1993) J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  69. Chai J-D, Head-Gordon M (2008) J Chem Phys 128:084106

    Article  Google Scholar 

  70. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  71. Gorelsky SI, AOMix: program for molecular orbital analysis. University of Ottawa, version 6.5 2011. http://www.sg-chem.net/

  72. Gorelsky SI, Lever ABP (2001) J Organomet Chem 635:187

    Article  CAS  Google Scholar 

  73. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure. IV. Constants of diatomic molecules. Van Nostrand-Reinhold, New York

    Book  Google Scholar 

  74. Bak KL, Gauss J, Helgaker T, Jørgensen P, Olsen J (2000) Chem Phys Lett 319:563

    Article  CAS  Google Scholar 

  75. Meerts WL, Leeuw FHD, Dymanus A (1977) Chem Phys 22:1557

    Article  Google Scholar 

  76. Addicoat MA, Buntine MA, Metha GF, Gilbert ATB, Gill PMW (2007) J Phys Chem A 111:2625

    Article  CAS  Google Scholar 

  77. Zhanpeisov NU, Fukumura H (2006) J Chem Theory Comput 2:801

    Article  CAS  Google Scholar 

  78. Blyholder G (1964) J Phys Chem 68:2772

    Article  CAS  Google Scholar 

  79. Nilsson A, Pettersson LGM (2004) Surf Sci Rep 55:49

    Article  CAS  Google Scholar 

  80. Nilsson A, Weinelt M, Wiell T, Bennich P, Karis O, Wassdahl N, Stöhr J, Samant M (1997) Phys Rev Lett 78:2847

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial assistance from National Science Council, Taiwan is gratefully acknowledged. We are also grateful to the National Center for High-performance Computing, Hsinchu, Taiwan for computer time and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyi-Long Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Huang, YW., Ke, RS., Hao, WC., Lee, SL. (2013). An Evaluation of Density Functional Theory for CO Adsorption on Pt(111). In: Hotokka, M., Brändas, E., Maruani, J., Delgado-Barrio, G. (eds) Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology. Progress in Theoretical Chemistry and Physics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-01529-3_11

Download citation

Publish with us

Policies and ethics