Skip to main content

Finding Biologically Plausible Complex Network Topologies with a New Evolutionary Approach for Network Generation

  • Conference paper
EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 227))

Abstract

We explore the recently introduced Structured Nodes (SN) network model, for which earlier work has shown its capability in matching several topological properties of complex networks. We consider a diverse set of empirical biological complex networks as targets and we use an evolutionary algorithm (EA) approach to identify input for the SN model allowing it to generate networks similar to these targets.

We find that by using the EA the structural fit between SN networks and the targets is improved.

The combined SN/EA approach is a promising direction to further investigate the growth, properties and behaviour of biological networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland Science (2002)

    Google Scholar 

  2. Amaral, L.A.N., Scala, A., Barthélémy, M., Stanley, H.E.: Classes of small-world networks. Proceedings of the National Academy of Sciences 97(21), 11149–11152 (2000)

    Article  Google Scholar 

  3. Barabàsi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  4. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  5. Barrat, A., Weigt, M.: On the properties of small-world network models. Eur. Phy. Jour. B - Condensed Matter and Complex Systems 13(3), 547–560 (2000)

    Article  Google Scholar 

  6. Bassett, D.S., Bullmore, E.: Small-world brain networks. The Neuroscientist 12(6), 512–523 (2006)

    Article  Google Scholar 

  7. Chung, F., Lu, L., Dewey, T.G., Galas, D.J.: Duplication models for biological networks. Journal of Computational Biology 10(5), 677–687 (2003)

    Article  Google Scholar 

  8. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems. In: Genetic and Evolutionary Computation, Springer-Verlag New York, Inc. (2006)

    Google Scholar 

  9. Cole, M.: Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel programming. Parallel Computing 30(3), 389–406 (2004)

    Article  Google Scholar 

  10. Erdos, P., Renyi, A.: On random graphs I. Publicationes Mathematicae 6, 290–297 (1959)

    MathSciNet  Google Scholar 

  11. Frisco, P.: Network model with structured nodes. Phys. Rev. E 84, 021931 (2011)

    Article  Google Scholar 

  12. He, Y., Chen, Z.J., Evans, A.C.: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex 17(10), 2407–2419 (2007)

    Article  Google Scholar 

  13. Junker, B.H., Schreiber, F. (eds.): Analysis of Biological Networks. Wiley-Blackwell (2008)

    Google Scholar 

  14. Kleinberg, J., Easley, D.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press (2011)

    Google Scholar 

  15. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296(5569), 910–913 (2002)

    Article  Google Scholar 

  16. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: Simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  17. Sporns, O., Zwi, J.D.: The small world of the cerebral cortex. Neuroinformatics 2(2), 145–162 (2004)

    Article  Google Scholar 

  18. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon Govan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Govan, G., Chlanda, J., Corne, D., Xenos, A., Frisco, P. (2013). Finding Biologically Plausible Complex Network Topologies with a New Evolutionary Approach for Network Generation. In: Emmerich, M., et al. EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV. Advances in Intelligent Systems and Computing, vol 227. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01128-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01128-8_5

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-01127-1

  • Online ISBN: 978-3-319-01128-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics