Skip to main content

Influenza Cell-Culture Vaccine Production

  • Chapter
  • First Online:
Molecular Vaccines

Abstract

Influenza vaccination is currently the principal means of reducing or counteracting influenza mortality and morbidity burden in the community. Since the early development of monovalent killed-virus vaccine formulations in the 1940s, different principal strategies were followed by vaccine manufactures resulting in a variety of influenza vaccines (e.g., inactivated whole-virus vaccines, live attenuated vaccines, detergent or solvent “split” vaccines, subunit vaccines, and adjuvanted vaccines). Actually two main production processes, the classical egg-based technology and more recently cell-culture-based operations, can be distinguished. In addition different routes of immunization allow the generation of intramuscular-, intradermal-, and intranasal-influenza vaccines.

The development and the production of influenza vaccines is based on a complex manufacturing process starting with the selection and development of optimal candidate vaccine viruses, and it requires various dynamic interactions with regulatory authorities and health-care officials. Planning for vaccine supplies and use as well as provision of other related health-care resources are essential components of a comprehensive seasonal and pandemic influenza response. Rapid spread of influenza viruses during seasonal epidemics and occasional pandemics tightly frames the whole process if vaccine is to be manufactured and delivered on time. There is a continuous effort to develop new and safe influenza vaccines and improve reagents for strain-specific potency testing to face complex influenza-related challenges better.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eccles, R.: Understanding the symptoms of the common cold and influenza. Lancet Infect. Dis. 5, 718–25 (2005). doi:10.1016/S1473-3099(05)70270-X

    Article  PubMed  Google Scholar 

  2. Health topics influenza – WHO World Health Organization, Geneva, Switzerland. http://www.who.int/topics/influenza/en/ (2013)

  3. Influenza (Seasonal) Fact sheet N°211 – WHO World Health Organization, Geneva, Switzerland. http://www.who.int/mediacentre/factsheets/fs211/en/ (2009)

  4. Seasonal influenza (flu)/influenza (flu) viruses – CDC Centers for Disease Control and Prevention, Atlanta, USA. http://www.cdc.gov/flu/about/viruses/index.htm

  5. Webster, R.G., Laver, W.G.: Antigenic variation in influenza virus. Biology and chemistry. Prog. Med. Virol. 13, 271–338 (1971)

    PubMed  CAS  Google Scholar 

  6. Hay, A.J., Gregory, V., Douglas, A.R., Lin, Y.P.: The evolution of human influenza viruses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1861–70 (2001). doi:10.1098/rstb.2001.0999

    Article  PubMed  CAS  Google Scholar 

  7. Gasparini, R., Amicizia, D., Lai, P.L., Panatto, D.: Aflunov(®): a prepandemic influenza vaccine. Expert Rev. Vaccines 11, 145–57 (2012). doi:10.1586/erv.11.170

    Article  PubMed  CAS  Google Scholar 

  8. Beigel, J., Bray, M.: Current and future antiviral therapy of severe seasonal and avian influenza. Antiviral Res. 78, 91–102 (2008). doi:10.1016/j.antiviral.2008.01.003

    Article  PubMed  CAS  Google Scholar 

  9. Jefferson, T., et al.: Neuraminidase inhibitors for preventing and treating influenza in healthy adults and children. Cochrane Database Syst. Rev. 18, 1 (2012). doi:10.1002/14651858.CD008965.pub3

    Google Scholar 

  10. Oxford, J., Gilbert, A., Lambkin-Williams, R.: Influenza vaccines have a short but illustrious history of dedicated science enabling the rapid global production of A/Swine (H1N1) vaccine in the current pandemic. In: Del Giudice, G., Rappuoli, R. (eds.) Influenza Vaccines for the Future, pp. 115–147. Birkhauser Inc, Basel (2011)

    Chapter  Google Scholar 

  11. Verma, R., Khanna, P., Chawla, S.: Influenza vaccine: an effective preventive vaccine for developing countries. Hum. Vaccin. Immunother. 8, 675–8 (2012). doi:10.4161/hv.19516

    Article  PubMed  CAS  Google Scholar 

  12. Ellebedy, A.H., Webby, R.J.: Influenza vaccines. Vaccine 27(Suppl 4), D65–D68 (2009). doi:10.1016/j.vaccine.2009.08.038

    Article  PubMed  CAS  Google Scholar 

  13. WHO Global Influenza Surveillance Network (GISN) Surveillance and Vaccine Development – WHO Collaborating Centre for Reference and Research on Influenza (VIDRL), North Melbourne, Australia. http://www.influenzacentre.org/centre_GISN.htm

  14. Gerdil, C.: The annual production cycle for influenza vaccine. Vaccine 21, 1776–1779 (2003). pii: S0264410X03000719

    Article  PubMed  Google Scholar 

  15. Burnet, F.M.: Growth of influenza virus in the allantoic cavity of the chick embryo. Aust. J. Exp. Biol. Med. Sci. 19, 291–295 (1941)

    Article  Google Scholar 

  16. Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G., Webster, R.G.: A DNA transfection system for generation of influenza A virus from eight plasmids. Proc. Natl. Acad. Sci. U.S.A. 97, 6108–6113 (2000). doi:10.1073/pnas.100133697

    Article  PubMed  CAS  Google Scholar 

  17. Expert Committee on Biological Standardization Geneva, 17 to 21 October 2011 Proposed Generic Protocol for the Calibration of Seasonal/Pandemic Influenza Antigen Working Reagents by WHO Essential Regulatory Laboratories (WHO/BS/2011.2183). http://www.who.int/biologicals/expert_committee/BS2011.2183_Flu_vax_ERL_calibration_protocol.pdf

  18. Hickling J., D’Hondt E. A review of production technologies for influenza virus vaccines, and their suitability for deployment in developing countries for influenza pandemic preparedness – WHO World Health Organization Initiative for Vaccine Research Geneva Switzerland Date: 20 December 2006. www.who.int/entity/vaccine_research/diseases/influenza/Flu_vacc_manuf_tech_report.pdf

  19. Matthews, J.T.: Egg-based production of influenza vaccine: 30 years of commercial experience. The Bridge 36, 17–24 (2006)

    Google Scholar 

  20. Rappuoli, R.: Cell-culture-based vaccine production: technological options. The Bridge 36, 25–30 (2006)

    Google Scholar 

  21. Dormitzer, P.R.: Cell culture-derived influenza vaccines. In: Del Giudice, G., Rappuoli, R. (eds.) Influenza Vaccines for the Future, pp. 293–312. Birkhauser Inc, Basel (2011)

    Chapter  Google Scholar 

  22. Kistner, O., Barrett, P.N., Mundt, W., Reiter, M., Schober-Bendixen, S., Dorner, F.: Development of a mammalian cell (Vero) derived candidate influenza virus vaccine. Vaccine 16, 960–968 (1998). pii: S0264-410X(97)00301-0

    Article  PubMed  CAS  Google Scholar 

  23. Palache, A.M., Brands, R., van Scharrenburg, G.: Immunogenicity and reactogenicity of influenza subunit vaccines produced in MDCK cells or fertilised chicken eggs. J. Infect. Dis. 176(Suppl 1), S20–S23 (1997)

    Article  PubMed  Google Scholar 

  24. Schild, G.C., Wood, J.M., Newman, R.W.: A single radial-immunodiffusion technique for the assay of influenza hemagglutinin antigen. WHO Bull. 52, 223–231 (1975)

    CAS  Google Scholar 

  25. Wood, J.M., Schild, G.C., Newman, R.W., Seagroatt, V.: Application of an improved single radial-immunodiffusion technique for the assay of influenza hemagglutinin antigen content of whole virus and subunit vaccines. Dev. Biol. Stand. 39, 193–200 (1977)

    PubMed  CAS  Google Scholar 

  26. Recommendations for the production and control of influenza vaccine (inactivated) © World Health Organization WHO Technical Report Series, No. 927, Annex 3 (2005), http://www.who.int/vaccine_research/diseases/influenza/TRS_927_ANNEX_3_Influenza_2005.pdf

  27. Wood, J.M., Levandowski, R.A.: The influenza vaccine licensing process. Vaccine 21, 1786–1788 (2003). pii: S0264410X03000732

    Article  PubMed  CAS  Google Scholar 

  28. Sambhara, S., Rappuoli, R.: Improving influenza vaccines. Expert Rev. Vaccines 11, 871–872 (2012). doi:10.1586/erv.12.79

    Article  PubMed  CAS  Google Scholar 

  29. Dormitzer, P.R., Tsai, T.F., Del Giudice, G.: New technologies for influenza vaccines. Hum. Vaccin. Immunother. 8, 45–58 (2012). doi:10.4161/hv.8.1.18859

    Article  PubMed  CAS  Google Scholar 

  30. Montomoli, E., et al.: Cell culture-derived influenza vaccines from Vero cells: a new horizon for vaccine production. Expert Rev. Vaccines 11, 587–94 (2012). doi:10.1586/erv.12.24

    Article  PubMed  CAS  Google Scholar 

  31. Strecker, T., et al.: Exploring synergies between academia and vaccine manufacturers: a pilot study on how to rapidly produce vaccines to combat emerging pathogens. Clin. Chem. Lab. Med. 50, 1275–9 (2012). doi:10.1515/cclm-2011-0650

    Article  PubMed  CAS  Google Scholar 

  32. WHO Writing Group, Ampofo W. K. et al.: Improving influenza vaccine virus selection: report of a WHO informal consultation held at WHO headquarters, Geneva, Switzerland, 14–16 June 2010. Influenza Other Respi. Viruses. 6, 142–152 (2012). doi: 10.1111/j.1750-2659.2011.00277.x

    Google Scholar 

  33. Kapteyn, J.C., et al.: HPLC-based quantification of haemagglutinin in the production of egg and MDCK cell-derived influenza virus seasonal and pandemic vaccines. Vaccine 27, 1468–77 (2009). doi:10.1016/j.vaccine.2008.11.113

    Article  PubMed  CAS  Google Scholar 

  34. Lorbetskie, B., et al.: Optimization and qualification of a quantitative reversed-phase HPLC method for hemagglutinin in influenza preparations and its comparative evaluation with biochemical assays. Vaccine 29, 3377–89 (2011). doi:10.1016/j.vaccine.2011.02.090

    Article  PubMed  CAS  Google Scholar 

  35. Williams, T.L., et al.: Quantification of influenza virus hemagglutinins in complex mixtures using isotope dilution tandem mass spectrometry. Vaccine 26, 2510–20 (2008). doi:10.1016/j.vaccine.2008.03.014

    Article  PubMed  CAS  Google Scholar 

  36. Cox, M.M.: Recombinant protein vaccines produced in insect cells. Vaccine 30, 1759–66 (2012). doi:10.1016/j.vaccine.2012.01.016

    Article  PubMed  CAS  Google Scholar 

  37. Baxter, R., et al.: Evaluation of the safety, reactogenicity and immunogenicity of FluBlok® trivalent recombinant baculovirus-expressed hemagglutinin influenza vaccine administered intramuscularly to healthy adults 50–64 years of age. Vaccine 29, 2272–8 (2011). doi:10.1016/j.vaccine.2011.01.039

    Article  PubMed  CAS  Google Scholar 

  38. Song, L., et al.: Efficacious recombinant influenza vaccines produced by high yield bacterial expression: a solution to global pandemic and seasonal needs. PLoS One 3, e2257 (2008). doi:10.1371/journal.pone.0002257

    Article  PubMed  Google Scholar 

  39. Kang, S.M., Kim, M.C., Compans, R.W.: Virus-like particles as universal influenza vaccines. Expert Rev. Vaccines 11, 995–1007 (2012). doi:10.1586/erv.12.70

    Article  PubMed  CAS  Google Scholar 

  40. Haynes, J.R.: Influenza virus-like particle vaccines. Expert Rev. Vaccines 8, 435–45 (2009). doi:10.1586/erv.09.8

    Article  PubMed  CAS  Google Scholar 

  41. Gasparini, R., Amicizia, D., Lai, P.L., Panatto, D.: Live attenuated influenza vaccine–a review. J. Prev. Med. Hyg. 52, 95–101 (2011)

    Article  PubMed  CAS  Google Scholar 

  42. Monto, A.S., et al.: Comparative efficacy of inactivated and live attenuated influenza vaccines. N. Engl. J. Med. 361, 1260–7 (2009). doi:10.1056/NEJMoa0808652

    Article  PubMed  CAS  Google Scholar 

  43. Carter, N.J., Curran, M.P.: Live attenuated influenza vaccine (FluMist®; Fluenz™): a review of its use in the prevention of seasonal influenza in children and adults. Drugs 71, 1591–622 (2011). doi:10.2165/11206860-000000000-00000

    Article  PubMed  CAS  Google Scholar 

  44. Kopecky-Bromberg, S.A., Palese, P.: Recombinant vectors as influenza vaccines. Curr. Top. Microbiol. Immunol. 333, 243–67 (2009). doi:10.1007/978-3-540-92165-3_13

    Article  PubMed  CAS  Google Scholar 

  45. Lambe, T.: Novel viral vectored vaccines for the prevention of influenza. Mol. Med. 18, 1153–60 (2012). doi:10.2119/molmed.2012.00147

    Article  PubMed  CAS  Google Scholar 

  46. O’Hagan, D.T., Tsai, T., Reed, S.: Emulsion-based adjuvants for improved influenza vaccines. In: Del Giudice, G., Rappuoli, R. (eds.) Influenza Vaccines for the Future, pp. 327–357. Birkhauser Inc, Basel (2011)

    Chapter  Google Scholar 

  47. Vesikari, T., Pellegrini, M., Karvonen, A., Groth, N., Borkowski, A., et al.: Enhanced immunogenicity of seasonal influenza vaccines in young children using MF59 adjuvant. Pediatr. Infect. Dis. J. 28, 563–571 (2009). doi:10.1097/INF.0b013e31819d6394

    Article  PubMed  Google Scholar 

  48. Vesikari, T., Knuf, M., Wutzler, P., Karvonen, A., Kieninger-Baum, D., et al.: Oil-in-water emulsion adjuvant with influenza vaccine in young children. N. Engl. J. Med. 365, 1406–16 (2011). doi:10.1056/NEJMoa1010331

    Article  PubMed  CAS  Google Scholar 

  49. Heikkinen, T., Young, J., van Beek, E., Franke, H., Verstraeten, T., et al.: Safety of MF59-adjuvanted A/H1N1 influenza vaccine in pregnancy: a comparative cohort study. Am. J. Obstet. Gynecol. 207, 177.e1–8 (2012). doi:10.1016/j.ajog.2012.07.007

    Article  CAS  Google Scholar 

  50. Ambrose, C.S., Levin, M.J.: The rationale for quadrivalent influenza vaccines. Hum. Vaccin. Immunother. 8, 81–88 (2012). doi:10.4161/hv.8.1.17623

    Article  PubMed  Google Scholar 

  51. Barr, I.G., Jelley, L.L.: The coming era of quadrivalent human influenza vaccines: who will benefit? Drugs 72, 2177–85 (2012). doi:10.2165/11641110-000000000-00000

    Article  PubMed  Google Scholar 

  52. Shaw, A.R.: Universal influenza vaccine: the holy grail? Expert Rev. Vaccines 11, 923–927 (2012). doi:10.1586/erv.12.73

    Article  PubMed  CAS  Google Scholar 

  53. Du, L., Zhou, Y., Jiang, S.: Research and development of universal influenza vaccines. Microbes Infect. 12, 280–6 (2010). doi:10.1016/j.micinf.2010.01.001

    Article  PubMed  CAS  Google Scholar 

  54. Kang, S.M., Song, J.M., Compans, R.W.: Novel vaccines against influenza viruses. Virus Res. 162, 31–38 (2011). doi:10.1016/j.virusres.2011.09.037

    Article  PubMed  CAS  Google Scholar 

  55. Rudolph, W., Ben Yedidia, T.: A universal influenza vaccine: where are we in the pursuit of this “Holy Grail”? Hum. Vaccin. 7, 10–11 (2011). pii: 14925

    Article  PubMed  Google Scholar 

  56. Belshe, R.B., Newman, F.K., Cannon, J., Duane, C., Treanor, J., et al.: Serum antibody responses after intradermal vaccination against influenza. N. Engl. J. Med. 351, 2286–94 (2004). doi:10.1056/NEJMoa043555

    Article  PubMed  CAS  Google Scholar 

  57. Kenney, R.T., Frech, S.A., Muenz, L.R., Villar, C.P., Glenn, G.M.: Dose sparing with intradermal injection of influenza vaccine. N. Engl. J. Med. 351, 2295–301 (2004). doi:10.1056/NEJMoa043540

    Article  PubMed  CAS  Google Scholar 

  58. Ansaldi, F., Durando, P., Icardi, G.: Intradermal influenza vaccine and new devices: a promising chance for vaccine improvement. Expert Opin. Biol. Ther. 11, 415–27 (2011). doi:10.1517/14712598.2011.557658

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Heidi Trusheim and Karsten Kattmann for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Hilleringmann PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hilleringmann, M., Jobst, B., Baudner, B.C. (2014). Influenza Cell-Culture Vaccine Production. In: Giese, M. (eds) Molecular Vaccines. Springer, Cham. https://doi.org/10.1007/978-3-319-00978-0_26

Download citation

Publish with us

Policies and ethics