Skip to main content

Mechanism of Adjuvanticity of Aluminum-Containing Formulas

  • Chapter
  • First Online:
Molecular Vaccines

Abstract

For well over 80 years, alum is the most widely used adjuvant.The use of alternative adjuvants has been explored, however, aluminum adjuvants will continue to be used for many years. This is due to their good track record of safety, low cost, and adjuvanticity with a variety of antigens. Surprisingly, itsmechanism of action remains largely unknown.

In this book chapter we will describe the different alum formulations and our current understandingof its working mechanism, although alum’s final mode of action is not definite yet.

Abstract

Vaccinations have been given for well over a 100 years at the moment. The first reported vaccination was done by Edward Jenner in 1796 [1, 2]. He inoculated a young boy with cowpox virus and thereby rendered him resistant to a subsequent challenge with smallpox virus, an experiment that today would most certainly not be approved by regulatory agencies. Protection by vaccination can be achieved by giving inactivated microbes of virus particles, live attenuated virus, or subunit vaccine. However, subunit vaccination does not induce a strong immune response, which can be achieved by the administration of an adjuvant (Latin verb adjuvare means to help/aid). In immunology, an adjuvant is an agent that may stimulate the immune system and increase the response to a vaccine, without having any specific antigenic effect in it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hansen, B., Sokolovska, A., HogenEsch, H., Hem, S.L.: Relationship between the strength of antigen adsorption to an aluminum-containing adjuvant and the immune response. Vaccine 25, 6618–6624 (2007)

    Article  PubMed  CAS  Google Scholar 

  2. Jenner, E.: The Three Original Publications on Vaccination Against Smallpox. Harvard Classics. P.F. Collier & Son, New York (1909)

    Google Scholar 

  3. Jiang, D., Morefield, G.L., HogenEsch, H., Hem, S.L.: Relationship of adsorption mechanism of antigens by aluminum-containing adjuvants to in vitro elution in interstitial fluid. Vaccine 24, 1665–1669 (2006)

    Article  PubMed  CAS  Google Scholar 

  4. Glenny, A.: Insoluble precipitates in diphtheria and tetanus immunization. Br. Med. J. 2, 244–245 (1930)

    Article  PubMed  CAS  Google Scholar 

  5. Romero Méndez, I.Z., Shi, Y., HogenEsch, H., Hem, S.L.: Potentiation of the immune response to non-adsorbed antigens by aluminum-containing adjuvants. Vaccine 25, 825–833 (2007)

    Article  PubMed  Google Scholar 

  6. Tritto, E., Mosca, F., De Gregorio, E.: Mechanism of action of licensed vaccine adjuvants. Vaccine 27, 3331–3334 (2009)

    Article  PubMed  CAS  Google Scholar 

  7. Iyer, S., HogenEsch, H., Hem, S.L.: Effect of the degree of phosphate substitution in aluminum hydroxide adjuvant on the adsorption of phosphorylated proteins. Pharm. Dev. Technol. 8, 81–86 (2003)

    Article  PubMed  CAS  Google Scholar 

  8. Shi, Y., HogenEsch, H., Hem, S.L.: Change in the degree of adsorption of proteins by aluminum-containing adjuvants following exposure to interstitial fluid: freshly prepared and aged model vaccines. Vaccine 20, 80–85 (2001)

    Article  PubMed  CAS  Google Scholar 

  9. Kool, M., et al.: Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J. Exp. Med. 205, 869–882 (2008)

    Article  PubMed  CAS  Google Scholar 

  10. Glenny, A., Pope, C., Waddington, H., Wallace, U.: Immunological notes. XVII. The antigenic value of toxoid precipitated by potassium alum. J. Path. and Bact 29, 31–40 (1926)

    Article  CAS  Google Scholar 

  11. Heegaard, P.M.H., et al.: Adjuvants and delivery systems in veterinary vaccinology: current state and future developments. Arch. Virol. 156, 183–202 (2011)

    Article  PubMed  CAS  Google Scholar 

  12. Mannhalter, J.W., Neychev, H.O., Zlabinger, G.J., Ahmad, R., Eibl, M.M.: Modulation of the human immune response by the non-toxic and non-pyrogenic adjuvant aluminium hydroxide: effect on antigen uptake and antigen presentation. Clin. Exp. Immunol. 61, 143–151 (1985)

    PubMed  CAS  Google Scholar 

  13. Hem, S.L., HogenEsch, H.: Relationship between physical and chemical properties of aluminum-containing adjuvants and immunopotentiation. Expert Rev. Vaccines 6, 685–698 (2007)

    Article  PubMed  CAS  Google Scholar 

  14. Goto, N., Akama, K.: Histopathological studies of reactions in mice injected with aluminum-adsorbed tetanus toxoid. Microbiol. Immunol. 26, 1121–1132 (1982)

    PubMed  CAS  Google Scholar 

  15. Goto, N., et al.: Local tissue irritating effects and adjuvant activities of calcium phosphate and aluminium hydroxide with different physical properties. Vaccine 15, 1364–1371 (1997)

    Article  PubMed  CAS  Google Scholar 

  16. Gupta, R.K., Chang, A.C., Griffin, P., Rivera, R., Siber, G.R.: In vivo distribution of radioactivity in mice after injection of biodegradable polymer microspheres containing 14C-labeled tetanus toxoid. Vaccine 14, 1412–1416 (1996)

    Article  PubMed  CAS  Google Scholar 

  17. Hem, S.L., HogenEsch, H., Middaugh, C.R., Volkin, D.B.: Preformulation studies – the next advance in aluminum adjuvant-containing vaccines. Vaccine 28, 4868–4870 (2010)

    Article  PubMed  CAS  Google Scholar 

  18. Hutchison, S., et al.: Antigen depot is not required for alum adjuvanticity. FASEB J. 26, 1272–1279 (2011)

    Article  PubMed  Google Scholar 

  19. Noe, S.M., Green, M.A., HogenEsch, H., Hem, S.L.: Mechanism of immunopotentiation by aluminum-containing adjuvants elucidated by the relationship between antigen retention at the inoculation site and the immune response. Vaccine 28, 3588–3594 (2010)

    Article  PubMed  CAS  Google Scholar 

  20. Munks, M.W., et al.: Aluminum adjuvants elicit fibrin-dependent extracellular traps in vivo. Blood 116, 5191–5199 (2010)

    Article  PubMed  CAS  Google Scholar 

  21. Lambrecht, B.N., Kool, M., Willart, M.A.M., Hammad, H.: Mechanism of action of clinically approved adjuvants. Curr. Opin. Immunol. 21, 23–29 (2009)

    PubMed  CAS  Google Scholar 

  22. Steinman, R.M., Pope, M.: Exploiting dendritic cells to improve vaccine efficacy. J. Clin. Invest. 109, 1519–1526 (2002)

    PubMed  CAS  Google Scholar 

  23. Pashine, A., Valiante, N.M., Ulmer, J.B.: Targeting the innate immune response with improved vaccine adjuvants. Nat. Med. 11, S63–S68 (2005)

    Article  PubMed  CAS  Google Scholar 

  24. Bendelac, A., Medzhitov, R.: Adjuvants of immunity: harnessing innate immunity to promote adaptive immunity. J. Exp. Med. 195, F19–F23 (2002)

    Article  PubMed  CAS  Google Scholar 

  25. Kool M., et al.: Cutting edge: Alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol. 181, 3755–3759 (2008)

    PubMed  CAS  Google Scholar 

  26. Seubert, A., et al.: Adjuvanticity of the oil-in-water emulsion MF59 is independent of Nlrp3 inflammasome but requires the adaptor protein MyD88. Proc. Natl. Acad. Sci. 108, 11169–11174 (2011)

    Article  PubMed  CAS  Google Scholar 

  27. McKee, A.S., et al.: Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. J. Immunol. 183, 4403–4414 (2009)

    Article  PubMed  CAS  Google Scholar 

  28. Calabro, S., et al.: Vaccine adjuvants alum and MF59 induce rapid recruitment of neutrophils and monocytes that participate in antigen transport to draining lymph nodes. Vaccine 29, 1812–1823 (2011)

    Article  PubMed  CAS  Google Scholar 

  29. Didierlaurent, A.M., et al.: AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J. Immunol. 183, 6186–6197 (2009)

    Article  PubMed  CAS  Google Scholar 

  30. Mosca, F., et al.: Molecular and cellular signatures of human vaccine adjuvants. Proc. Natl. Acad. Sci. 105, 10501–10506 (2008)

    Article  PubMed  CAS  Google Scholar 

  31. Shi, Y., Evans, J.E., Rock, K.L.: Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521 (2003)

    Article  PubMed  CAS  Google Scholar 

  32. Sun, H., Pollock, K.G.J., Brewer, J.M.: Analysis of the role of vaccine adjuvants in modulating dendritic cell activation and antigen presentation in vitro. Vaccine 21, 849–855 (2003)

    Article  PubMed  CAS  Google Scholar 

  33. Li, H., Nookala, S., Re, F.: Aluminum hydroxide adjuvants activate caspase-1 and induce IL-1beta and IL-18 release. J. Immunol. 178, 5271–5276 (2007)

    PubMed  CAS  Google Scholar 

  34. Marichal, T., et al.: DNA released from dying host cells mediates aluminum adjuvant activity. Nat. Med. 17, 996–1002 (2011)

    Article  PubMed  CAS  Google Scholar 

  35. Langlet, C., et al.: CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization. J. Immunol. 188, 1751–1760 (2012)

    Article  PubMed  CAS  Google Scholar 

  36. Ulanova, M., Tarkowski, A., Hahn-Zoric, M., Hanson, L.A.: The common vaccine adjuvant aluminum hydroxide up-regulates accessory properties of human monocytes via an interleukin-4-dependent mechanism. Infect. Immun. 69, 1151–1159 (2001)

    Article  PubMed  CAS  Google Scholar 

  37. Seubert, A., Monaci, E., Pizza, M., O’Hagan, D.T., Wack, A.: The adjuvants aluminum hydroxide and MF59 induce monocyte and granulocyte chemoattractants and enhance monocyte differentiation toward dendritic cells. J. Immunol. 180, 5402–5412 (2008)

    PubMed  CAS  Google Scholar 

  38. Ghimire, T.R., Benson, R.A., Garside, P., Brewer, J.M.: Alum increases antigen uptake, reduces antigen degradation and sustains antigen presentation by DCs in vitro. Immunol. Lett. 147, 55–62 (2012)

    Article  PubMed  CAS  Google Scholar 

  39. Flach, T.L., et al.: Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat. Med. 17, 479–487 (2011)

    Google Scholar 

  40. Burgdorf, S., Kautz, A., Böhnert, V., Knolle, P.A., Kurts, C.: Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science 316, 612–616 (2007)

    Article  PubMed  CAS  Google Scholar 

  41. Jordan, M.B., Mills, D.M., Kappler, J., Marrack, P., Cambier, J.C.: Promotion of B cell immune responses via an alum-induced myeloid cell population. Science 304, 1808–1810 (2004)

    Article  PubMed  CAS  Google Scholar 

  42. Wang, H.-B., Weller, P.F.: Pivotal advance: eosinophils mediate early alum adjuvant-elicited B cell priming and IgM production. J. Leukoc. Biol. 83, 817–821 (2008)

    Article  PubMed  CAS  Google Scholar 

  43. McKee, A.S., et al.: Gr1 + IL-4-producing innate cells are induced in response to Th2 stimuli and suppress Th1-dependent antibody responses. Int. Immunol. 20, 659–669 (2008)

    Article  PubMed  CAS  Google Scholar 

  44. Wijburg, O.L., et al.: The role of macrophages in the induction and regulation of immunity elicited by exogenous antigens. Eur. J. Immunol. 28, 479–487 (1998)

    Article  PubMed  CAS  Google Scholar 

  45. Bomford, R.: The comparative selectivity of adjuvants for humoral and cell-mediated immunity. II. Effect on delayed-type hypersensitivity in the mouse and guinea pig, and cell-mediated immunity to tumour antigens in the mouse of Freund’s incomplete and complete adjuvants, alhydrogel, Corynebacterium parvum, Bordetella pertussis, muramyl dipeptide and saponin. Clin. Exp. Immunol. 39, 435–441 (1980)

    PubMed  CAS  Google Scholar 

  46. Brewer, J.M., et al.: Aluminium hydroxide adjuvant initiates strong antigen-specific Th2 responses in the absence of IL-4- or IL-13-mediated signaling. J. Immunol. 163, 6448–6454 (1999)

    PubMed  CAS  Google Scholar 

  47. Grun, J.L., Maurer, P.H.: Different T helper cell subsets elicited in mice utilizing two different adjuvant vehicles: the role of endogenous interleukin 1 in proliferative responses. Cell. Immunol. 121, 134–145 (1989)

    Article  PubMed  CAS  Google Scholar 

  48. Serre, K., et al.: IL-4 directs both CD4 and CD8 T cells to produce Th2 cytokines in vitro, but only CD4 T cells produce these cytokines in response to alum-precipitated protein in vivo. Mol. Immunol. 47, 1914–1922 (2010)

    Article  PubMed  CAS  Google Scholar 

  49. Gavin, A.L., et al.: Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science 314, 1936–1938 (2006)

    Article  PubMed  CAS  Google Scholar 

  50. Schnare, M., et al.: Toll-like receptors control activation of adaptive immune responses. Nat. Immunol. 2, 947–950 (2001)

    Article  PubMed  CAS  Google Scholar 

  51. Nemazee, D., Gavin, A., Hoebe, K., Beutler, B.: Immunology: toll-like receptors and antibody responses. Nature 441, (2006)

    Google Scholar 

  52. Palm, N.W., Medzhitov, R.: Immunostimulatory activity of haptenated proteins. Proc. Natl. Acad. Sci. 106, 4782–4787 (2009)

    Article  PubMed  CAS  Google Scholar 

  53. Martinon, F., Tschopp, J.: Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ. 14, 10–22 (2007)

    Article  PubMed  CAS  Google Scholar 

  54. Ting, J.P.Y., Willingham, S.B., Bergstralh, D.T.: NLRs at the intersection of cell death and immunity. Nat. Rev. Immunol. 8, 372–379 (2008)

    Article  PubMed  CAS  Google Scholar 

  55. Mariathasan, S., Monack, D.M.: Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat. Rev. Immunol. 7, 31–40 (2007)

    Article  PubMed  CAS  Google Scholar 

  56. Martinon, F., Gaide, O., Pétrilli, V., Mayor, A., Tschopp, J.: NALP inflammasomes: a central role in innate immunity. Semin. Immunopathol. 29, 213–229 (2007)

    Article  PubMed  CAS  Google Scholar 

  57. Fritz, J.H., Ferrero, R.L., Philpott, D.J., Girardin, S.E.: Nod-like proteins in immunity, inflammation and disease. Nat. Immunol. 7, 1250–1257 (2006)

    Article  PubMed  CAS  Google Scholar 

  58. Kawai, T., Akira, S.: Signaling to NF-κB by Toll-like receptors. Trends Mol. Med. 13, 460–469 (2007)

    Article  PubMed  CAS  Google Scholar 

  59. Arend, W.P., Palmer, G., Gabay, C.: IL-1, IL-18, and IL-33 families of cytokines. Immunol. Rev. 223, 20–38 (2008)

    Article  PubMed  CAS  Google Scholar 

  60. Kool, M., et al.: Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol. 181, 3755–3759 (2008)

    PubMed  CAS  Google Scholar 

  61. Eisenbarth, S.C., Colegio, O.R., O’Connor, W., Sutterwala, F.S., Flavell, R.A.: Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008)

    Article  PubMed  CAS  Google Scholar 

  62. Li, H., Willingham, S.B., Ting, J.P.Y., Re, F.: Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J. Immunol. 181, 17–21 (2008)

    PubMed  CAS  Google Scholar 

  63. Franchi, L., Núñez, G.: The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1β secretion but dispensable for adjuvant activity. Eur. J. Immunol. 38, 2085–2089 (2008)

    Article  PubMed  CAS  Google Scholar 

  64. Nakashima, K., et al.: A novel Syk kinase-selective inhibitor blocks antigen presentation of immune complexes in dendritic cells. Eur. J. Pharmacol. 505, 223–228 (2004)

    Article  PubMed  CAS  Google Scholar 

  65. Greenberg, S., Chang, P., Wang, D.C., Xavier, R., Seed, B.: Clustered syk tyrosine kinase domains trigger phagocytosis. Proc. Natl. Acad. Sci. U.S.A. 93, 1103–1107 (1996)

    Article  PubMed  CAS  Google Scholar 

  66. Turner, M., Schweighoffer, E., Colucci, F., Di Santo, J.P., Tybulewicz, V.L.: Tyrosine kinase SYK: essential functions for immunoreceptor signalling. Immunol. Today 21, 148–154 (2000)

    Article  PubMed  CAS  Google Scholar 

  67. Ng, G., et al.: Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity 29, 807–818 (2008)

    Article  PubMed  CAS  Google Scholar 

  68. Kuroda, E., et al. Silica crystals and aluminum salts regulate the production of prostaglandin in macrophages via NALP3 inflammasome-independent mechanisms. Immunity. 34, 1–13 (2011)

    Google Scholar 

  69. Kool, M., et al.: An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma. Immunity 34, 527–540 (2011)

    Article  PubMed  CAS  Google Scholar 

  70. Mori, A., et al.: The vaccine adjuvant alum inhibits IL-12 by promoting PI3 kinase signaling while chitosan does not inhibit IL-12 and enhances Th1 and Th17 responses. Eur. J. Immunol. 42, 2709–2719 (2012)

    Article  PubMed  CAS  Google Scholar 

  71. Goto, N., Akama, K.: Local histopathological reactions to aluminum-adsorbed tetanus toxoid. Naturwissenschaften 71, 427–428 (1984)

    Article  PubMed  CAS  Google Scholar 

  72. Alving, C.R., Peachman, K.K., Rao, M., Reed, S.G.: Adjuvants for human vaccines. Curr. Opin. Immunol. 24, 310–315 (2012)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjam Kool PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kool, M., Lambrecht, B.N. (2014). Mechanism of Adjuvanticity of Aluminum-Containing Formulas. In: Giese, M. (eds) Molecular Vaccines. Springer, Cham. https://doi.org/10.1007/978-3-319-00978-0_14

Download citation

Publish with us

Policies and ethics