Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 226))

  • 2428 Accesses

Abstract

Nowadays ubiquitous sensor stations are deployed to measure geophysical fields for several ecological and environmental processes. Although these fields are measured at the specific location of stations, geo-statistical problems demand for inference processes to supplement, smooth and standardize recorded data. We study how predictive regional trees can supplement data sampled periodically in an ubiquitous sensing scenario. Data records that are similar one to each other are clustered according to a rectangular decomposition of the region of analysis; a predictive model is associated to the region covered by each cluster. The cluster model depicts the spatial variation of data over a map, the predictive model supplements any unknown record that is recognized belong to a cluster region. We illustrate an incremental algorithm to yield time-evolving predictive regional trees that account for the fact that the statistical properties of the recorded data may change over time. This algorithm is evaluated with spatio-temporal data collections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees. In: ICML 1998, pp. 55–63. Morgan Kaufmann (1998)

    Google Scholar 

  2. Burrough, P., McDonnell, R.: Principles of Geographical Information Systems. Oxford University Press (1998)

    Google Scholar 

  3. Ciampi, A., Appice, A., Malerba, D., Muolo, A.: An intelligent system for real time fault detection in PV plants. In: M’Sirdi, N., Namaane, A., Howlett, R.J., Jain, L.C. (eds.) Sustainability in Energy and Buildings. SIST, vol. 12, pp. 235–244. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Gama, J., Rodrigues, P.P.: An overview on mining data streams. In: Abraham, A., Hassanien, A.-E., de Carvalho, A.P.d.L.F., Snášel, V. (eds.) Foundations of Computational Intelligence (6). SCI, vol. 206, pp. 29–45. Springer, Heidelberg (2009)

    Google Scholar 

  5. Góra, G., Wojna, A.: RIONA: A classifier combining rule induction and k-NN method with automated selection of optimal neighbourhood. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 111–123. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Ikonomovska, E., Gama, J., Dzeroski, S.: Incremental multi-target model trees for data streams. In: SAC 2011, pp. 988–993. ACM (2011)

    Google Scholar 

  7. Ikonomovska, E., Gama, J., Dzeroski, S.: Learning model trees from evolving data streams. Data Min. Knowl. Discov. 23(1), 128–168 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Intel Berkeley Labdata, http://db.csail.mit.edu/labdata/labdata.html

  9. Li, J., Heap, A.: A Review of Spatial Interpolation Methods for Environmental Scientists. Geoscience Australia, Record 2008/23 (2008)

    Google Scholar 

  10. Michalski, R.S., Stepp, R.E.: Learning from observation: Conceptual clustering. In: Machine Learning: An Artificial Intelligence Approach, Tioga, pp. 331–364 (1983)

    Google Scholar 

  11. Potts, D., Sammut, C.: Incremental learning of linear model trees. Machine Learning 61(1-3), 5–48 (2005)

    Article  MATH  Google Scholar 

  12. Shekhar, S., Chawla, S.: The origins of kriging. Mathematical Geology 22, 239–252 (1990)

    Article  MathSciNet  Google Scholar 

  13. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: ACM National Conference, pp. 517–524. ACM (1968)

    Google Scholar 

  14. South American Air Climate Data, http://climate.geog.udel.edu/~climate/html_pages/sa_air_clim.html

  15. Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., Schult, R.: Monic: modeling and monitoring cluster transitions. In: Proc. of KDD 2006, pp. 706–711. ACM (2006)

    Google Scholar 

  16. Wang, Y., Witten, I.: Induction of model trees for predicting continuous classes. In: Proc. Poster Papers of ECML 1997, pp. 128–137. Faculty of Informatics and Statistics, University of Economics, Prague (1997)

    Google Scholar 

  17. Watson, G.: Trend-surface analysis. Journal of the International Association for Mathematical Geology 3, 215–226 (1971)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Appice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Appice, A., Pravilovic, S., Malerba, D. (2013). Predictive Regional Trees to Supplement Geo-Physical Random Fields. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds) Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013. Advances in Intelligent Systems and Computing, vol 226. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00969-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00969-8_25

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00968-1

  • Online ISBN: 978-3-319-00969-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics