Skip to main content

Adaptive Uncertainty Quantification for Computational Fluid Dynamics

  • Chapter
  • First Online:
Uncertainty Quantification in Computational Fluid Dynamics

Abstract

Two different approaches to propagating uncertainty are considered, both with application to CFD models, both adaptive in the stochastic space. The first is “Adaptive Stochastic Finite Elements”, which approximates the model response in the stochastic space on a triangular grid with quadratic reconstruction on the elements. Limiting reduces the reconstruction to linear in the presence of discontinuities, and the mesh is refined using the Hessian of the response as an indicator. This construction allows for UQ in the presence of strong shocks in the response, for example in case of a transonic aerofoil with uncertain Mach number, and where variability in surface pressure is of interest. The second approach is “Adaptive Gradient-Enhanced Kriging for UQ”, which uses a Gaussian process model as a surrogate for the CFD model. To deal with the high cost of interpolating in high-dimensional spaces we make use of the adjoint of the CFD code, which provides derivatives in all stochastic directions at a cost independent of dimension. The Gaussian process framework allows this information to be incorporated into the surrogate, as well as providing regression of both CFD output values and derivatives according to error estimates. It also provides an interpolation error estimate on which an adaptivity indicator is based, weighted with the input uncertainty. A transonic aerofoil with four uncertain shape parameters is given as an example case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Based on: Jeroen A.S. Witteveen, “Efficient and Robust Uncertainty Quantification for Computational Fluid Dynamics and Fluid-Structure Interaction”, Ph.D. thesis, Delft University of Technology, 2009 (Chap. 4).

  2. 2.

    Based on: R.P. Dwight and Z.-H. Han, “Parametric Uncertainty Quantification with Adjoint Gradient-Enhanced Kriging”, AIAA Paper, AIAA-2009–2276, 2011.

References

  1. Bassi, F., Crivellini, A., Rebay, S., Savini, M.: Discontinuous galerkin solution of the Reynolds-averaged Navier-Stokes and k-w turbulence model equations. Computers and Fluids 34(4–5), 507–540 (2005). DOI DOI:10.1016/j.compfluid.2003.08.004

    Google Scholar 

  2. Chorin, A., Marsden, J.: A mathematical introduction to fluid mechanics. Springer-Verlag, New York (1979)

    Book  MATH  Google Scholar 

  3. Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S., Liu, J.W.H.: A supernodal approach to sparse partial pivoting. SIAM J. Matrix Analysis and Applications 20(3), 720–755 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dwight, R.: Efficiency improvements of RANS-based analysis and optimization using implicit and adjoint methods on unstructured grids. Ph.D. thesis, School of Mathematics, University of Manchester (2006)

    Google Scholar 

  5. Dwight, R.: Goal-oriented mesh adaptation using a dissipation-based error indicator. International Journal of Numerical Methods in Fluids 56(8), 1193–1200 (2008). DOI: 10.1002/fld.1582

    Article  MathSciNet  MATH  Google Scholar 

  6. Dwight, R.: Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation. Journal of Computational Physics 227(5), 2845–2863 (2008). DOI: 10.1016/j.jcp.2007.11.020

    Article  MATH  Google Scholar 

  7. Dwight, R., Brezillon, J.: Effect of approximations of the discrete adjoint on gradient-based optimization. AIAA Journal 44(12), 3022–3071 (2006)

    Article  Google Scholar 

  8. Dwight, R., Brezillon, J.: Effect of various approximations of the discrete adjoint on gradient-based optimization. In: Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno NV, AIAA-2006-0690 (2006)

    Google Scholar 

  9. Giles, M., Duta, M., Muller, J.D., Pierce, N.: Algorithm developments for discrete adjoint methods. AIAA Journal 41(2), 198–205 (2003)

    Article  Google Scholar 

  10. H.-S., C., Alonso, J.: Using gradients to construct cokriging approximation models for high-dimensional design optimization problems. In: AIAA Paper Series, Paper 2002-0317 (2002)

    Google Scholar 

  11. Jones, D., Schonlau, M., Welch, W.: Efficient global optimization of expensive black-box functions. Journal of Global Optimization 13, 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lagarias, J., Reeds, J., Wright, M., Wright, P.: Convergence properties of the Nelder-Mead Simplex method in low dimensions. SIAM Journal on Optimization 9(1), 112–147 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Maitre, O.L., Najm, H., Ghanem, R., Knio, O.: Multi-resolution analysis of Wiener-type uncertainty propagation schemes. J. Comput. Phys. 197, 502–531 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. McKay, M., Conover, W., Beckman, R.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  15. Nelder, J., Mead, R.: A simplex method for function minimization. Computer Journal 7(4), 308–313 (1965)

    Article  MATH  Google Scholar 

  16. O’Hagan, A., Oakley, J.E.: Probability is perfect, but we can’t elicit it perfectly. Reliability Engineering and System Safety 85(1–3), 239–248 (2004). DOI 10.1016/j.ress.2004.03.014

    Article  Google Scholar 

  17. Petras, K.: Fast calculation of coefficients in the smolyak algorithm. Numerical Algorithms 26(2), 93–109 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rowan, T.: The subplex method for unconstrained optimization. Ph.D. thesis, Department of Computer Sciences, Univ. of Texas (1990)

    Google Scholar 

  19. Sacks, J., Welch, W., Mitchell, T., Wynn, H.: Design and analysis of computer experiments (with discussion). Statistical Science 4, 409–435 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Doklady Akademii Nauk SSSR 4, 240–243 (1963)

    Google Scholar 

  21. Webster, R., Oliver, M.: Geostatistics for Environmental Scientists, second edn. Wiley (2007). ISBN 0470028580

    Google Scholar 

  22. Wikle, C., Berliner, L.: A Bayesian tutorial for data assimilation. Physica D 230, 1–16 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xiu, D., Hesthaven, J.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27, 1118–1139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Dwight .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dwight, R.P., Witteveen, J.A.S., Bijl, H. (2013). Adaptive Uncertainty Quantification for Computational Fluid Dynamics. In: Bijl, H., Lucor, D., Mishra, S., Schwab, C. (eds) Uncertainty Quantification in Computational Fluid Dynamics. Lecture Notes in Computational Science and Engineering, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-319-00885-1_4

Download citation

Publish with us

Policies and ethics