Skip to main content

Dry Powder Inhalers

  • Chapter
  • First Online:
Particulate Products

Part of the book series: Particle Technology Series ((POTS,volume 19))

Abstract

Successful drug delivery using dry powder inhaler (DPI) technology is based on knowledge of pulmonary deposition, targeting and its relationship to aerodynamic particle size distribution. DPI technologies consist of three notable elements, the formulation, the metering system and the mechanism of dispersion as an aerosol. Each of these is discussed below but emphasis is placed on powder formulation, the forces of interaction between particles that must be overcome to disperse them and the means whereby energy is imparted to achieve this objective. Efficient and reproducible drug delivery with respect to aerosol properties and dose are the objectives of product development and a requirement for regulatory approval for satisfactory disease therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weibel, E.R.: Morphometry of the human lung: the state of the art after two decades. Bull. Eur. Physiopath. Res. 15, 999–1013 (1979)

    Google Scholar 

  2. Carvalho, T.C., Peters, J.I., Williams 3rd, R.O.: Influence of particle size on regional lung deposition–what evidence is there? Int. J. Pharm. 406, 1–10 (2011)

    Google Scholar 

  3. Sbirlea-Apiou, G., Katz, I., Caillibotte, G., Martonen, T., Yang, Y.: Deposition mechanics of pharmaceutical particles in human airways. In: Hickey, A.J. (ed.) Inhalation Aerosols: Physical and Biological Basis for Therapy, vol. 221, pp. 1–30. Informa Healthcare USA, New York (2007)

    Google Scholar 

  4. Byron, P.R.: Prediction of drug residence times in regions of the human respiratory tract following aerosol inhalation. J. Pharm. Sci. 75, 433–438 (1986)

    Google Scholar 

  5. http://www.mmadcalculator.com/andersen-impactor-mmad.html. Accessed 22 Jan 2012

  6. Crowder, T.M., Rosati, J.A., Schroeter, J.D., Hickey, A.J., Martonen, T.B.: Fundamental effects of particle morphology on lung delivery: predictions of Stokes’ law and the particular relevance to dry powder inhaler formulation and development. Pharm. Res. 19, 239–245 (2002)

    Google Scholar 

  7. Gardenhire, D.S.: Airway pharmacology. In: Wilkins, R.L., Stoller, J.K., Kacmarek, R.M. (eds.) Egan’s Fundamentals of Respiratory Care, pp. 667–692. Mosby/Elsevier Inc., St. Louis (2009)

    Google Scholar 

  8. Gardenhire, D.S.: Corticosteroids in respiratory care. In: Gardenhire, D.S. (ed.) Rau’s Respiratory Care Pharmacology, pp. 204–225. Mosby/Elsevier Inc., St. Louis (2008)

    Google Scholar 

  9. Weers, J.G., Tarara, T.E., Clark, A.R.: Design of fine particles for pulmonary drug delivery. Expert Opin. Drug Deliv. 4, 297–313 (2007)

    Google Scholar 

  10. Raltiere, R.J., Thompson, D.C.: Physiology and pharmacology of the airways. In: Hickey, A.J. (ed.) Inhalation Aerosols: Physical and Biological Basis for Therapy, vol. 221, pp. 83–126. Informa Healthcare USA, Inc., New York (2007)

    Google Scholar 

  11. Byron, P.R., Delvadia, R.R., Longest, P.W., Hindle, M.: Stepping into the trachea with realistic physical models: Uncertainties in regional drug deposition from powder inhalers. Respir. Drug Deliv. 1, 215–224 (2010)

    Google Scholar 

  12. Finlay, W.H., Martin, A.R.: Recent advances in predictive understanding of respiratory tract deposition. J. Aerosol Med. Pulm. Drug Deliv. 21, 189–206 (2008)

    Google Scholar 

  13. Rostami, A.A.: Computational modeling of aerosol deposition in respiratory tract: A review. Inhal. Toxicol. 21, 262–290 (2009)

    Google Scholar 

  14. Byron, P.R., Hindle, M., Lange, C.F., Longest, P.W., McRobbie, D., Oldham, M.J., Olsson, B., Thiel, C.G., Wachtel, H., Finlay, W.H.: In vivo-in vitro correlations: Predicting pulmonary drug deposition from pharmaceutical aerosols. J. Aerosol Med. Pulm. Drug Deliv. 23(Suppl 2), S59–S69 (2010)

    Google Scholar 

  15. Longest, P.W., Holbrook, L.T.: In silico models of aerosol delivery to the respiratory tract – development and applications. Adv. Drug Deliv. Rev. 64, 296–311 (2012)

    Google Scholar 

  16. Physical test and determinations, aerosols, nasal sprays, metered-dose inhalers, and dry powder inhalers, USP <601>, pp. 220–240 (2007)

    Google Scholar 

  17. Byron, P.R.: Selection and validation of cascade impactor test methods. Respir. Drug Deliv. IX, 169–178 (2004)

    Google Scholar 

  18. Dunbar, C.A., Hickey, A.J., Holzner, P.: Dispersion and characterization of pharmaceutical dry powder aerosols. KONA 16, 7–45 (1998)

    Google Scholar 

  19. Marple, V.A., Olson, B.A., Santhanakrishnan, K., Mitchell, J.P., Murray, S.C., Hudson-Curtis, B.L.: Next generation pharmaceutical impactor (a new impactor for pharmaceutical inhaler testing). Part II: Archival calibration. J. Aerosol Med. 16, 301–324 (2003)

    Google Scholar 

  20. Marple, V.A., Olson, B.A., Santhanakrishnan, K., Roberts, D.L., Mitchell, J.P., Hudson-Curtis, B.L.: Next generation pharmaceutical impactor: a new impactor for pharmaceutical inhaler testing. Part III. Extension of archival calibration to 15 L/min. J. Aerosol Med. 17, 335–343 (2004)

    Google Scholar 

  21. Marple, V.A., Roberts, D.L., Romay, F.J., Miller, N.C., Truman, K.G., Van Oort, M., Olsson, B., Holroyd, M.J., Mitchell, J.P., Hochrainer, D.: Next generation pharmaceutical impactor (a new impactor for pharmaceutical inhaler testing). Part I: Design. J. Aerosol Med. 16, 283–299 (2003)

    Google Scholar 

  22. Merkus, H.G.: Laser diffraction. In: Particle size measurements: Fundamentals, practice, quality, pp. 259–286. Springer (2009). http://www.amazon.com/Particle-Size-Measurements-Fundamentals-Technology/dp/904818052X

  23. Martin, G.P., MacRitchie, H.B., Marriott, C., Zeng, X.M.: Characterisation of a carrier-free dry powder aerosol formulation using inertial impaction and laser diffraction. Pharm. Res. 23, 2210–2219 (2006)

    Google Scholar 

  24. Marriott, C., MacRitchie, H.B., Zeng, X.M., Martin, G.P.: Development of a laser diffraction method for the determination of the particle size of aerosolised powder formulations. Int. J. Pharm. 326, 39–49 (2006)

    Google Scholar 

  25. Zeng, X.M., MacRitchie, H.B., Marriott, C., Martin, G.P.: Correlation between inertial impaction and laser diffraction sizing data for aerosolized carrier-based dry powder formulations. Pharm. Res. 23, 2200–2209 (2006)

    Google Scholar 

  26. Coates, M.S., Fletcher, D.F., Chan, H.K., Raper, J.A.: Effect of design on the performance of a dry powder inhaler using computational fluid dynamics. Part 1: Grid structure and mouthpiece length. J. Pharm. Sci. 93, 2863–2876 (2004)

    Google Scholar 

  27. Voss, A., Finlay, W.H.: Deagglomeration of dry powder pharmaceutical aerosols. Int. J. Pharm. 248, 39–50 (2002)

    Google Scholar 

  28. Begat, P., Morton, D.A., Staniforth, J.N., Price, R.: The cohesive-adhesive balances in dry powder inhaler formulations II: Influence on fine particle delivery characteristics. Pharm. Res. 21, 1826–1833 (2004)

    Google Scholar 

  29. Das, S., Larson, I., Young, P., Stewart, P.: Influence of storage relative humidity on the dispersion of salmeterol xinafoate powders for inhalation. J. Pharm. Sci. 98, 1015–1027 (2009)

    Google Scholar 

  30. Hickey, A.J.: Pharmaceutical Inhalation Aerosol Technology. Marcel Dekker, New York (2004)

    Google Scholar 

  31. Israelachvili, J.N.: Intermolecular and Surface Forces. Academic, London (1992)

    Google Scholar 

  32. Podczeck, F.: Particle-Particle Adhesion in Pharmaceutical Powder Handling. Imperial College Press, London (1998)

    Google Scholar 

  33. Visser, J.: An invited review van der Waals and other other cohesive forces affecting powder fluidization. Powder Technol. 58, 1–10 (1989)

    Google Scholar 

  34. Visser, J.: Particle adhesion and removal: A review. Particul. Sci. Technol. 13, 169–196 (1995)

    Google Scholar 

  35. Derjaguin, B.V.: Friction and adhesion. IV. The theory of adhesion of small particles. Kolloid Z. 69, 155–164 (1934)

    Google Scholar 

  36. Matsusaka, S., Maruyama, H., Matsuyama, T., Ghadiri, M.: Triboelectric charging of powders: A review. Chem. Eng. Sci. 65, 5781–5807 (2010)

    Google Scholar 

  37. Crowder, T.M., Hickey, A.J., Louey, M.D., Orr, N.: A Guide to Pharmaceutical Particulate Science. Interpharm Press/CRC, Boca Raton (2003)

    Google Scholar 

  38. Elajnaf, A., Carter, P., Rowley, G.: The effect of relative humidity on electrostatic charge decay of drugs and excipient used in dry powder inhaler formulation. Drug Dev. Ind. Pharm. 33, 967–974 (2007)

    Google Scholar 

  39. Elajnaf, A., Carter, P., Rowley, G.: Electrostatic characterisation of inhaled powders: Effect of contact surface and relative humidity. Eur. J. Pharm. Sci. 29, 375–384 (2006)

    Google Scholar 

  40. Hooton, J.C., German, C.S., Allen, S., Davies, M.C., Roberts, C.J., Tendler, S.J., Williams, P.M.: An atomic force microscopy study of the effect of nanoscale contact geometry and surface chemistry on the adhesion of pharmaceutical particles. Pharm. Res. 21, 953–961 (2004)

    Google Scholar 

  41. Podczeck, F.: The relationship between physical properties of lactose monohydrate and the aerodynamic behaviour of adhered drug particles. Int. J. Pharm. 160, 119–130 (1998)

    Google Scholar 

  42. Podczeck, F., Newton, J.M.: Development of an ultracentrifuge technique to determine the adhesion and friction properties between particles and surfaces. J. Pharm. Sci. 84, 1067–1071 (1995)

    Google Scholar 

  43. Hickey, A.J., Mansour, H.M., Telko, M.J., Xu, Z., Smyth, H.D., Mulder, T., McLean, R., Langridge, J., Papadopoulos, D.: Physical characterization of component particles included in dry powder inhalers. I. Strategy review and static characteristics. J. Pharm. Sci. 96, 1282–1301 (2007)

    Google Scholar 

  44. Ziskind, G., Fichman, M., Gutfinger, C.: Resuspension of particulates from surfaces to turbulent flows – review and analysis. J. Aerosol Sci. 26, 613–644 (1995)

    Google Scholar 

  45. Ziskind, G., Fichman, M., Gutfinger, C.: Adhesion moment model for estimating particle detachment from a surface. J. Aerosol Sci. 28, 623–634 (1997)

    Google Scholar 

  46. Wang, H.C.: Effects of inception motion on particle detachment from surfaces. Aerosol Sci. Technol. 13, 386–393 (1990)

    Google Scholar 

  47. Ibrahim, A.H., Dunn, P.F., Brach, R.M.: Microparticle detachment from surfaces exposed to turbulent air flow: Controlled experiments and modeling. J. Aerosol Sci. 34, 765–782 (2003)

    Google Scholar 

  48. Gradon, L.: Resuspension of particles from surfaces: Technological, environmental and pharmaceutical aspects. Adv. Powder Technol. 20, 17–28 (2009)

    Google Scholar 

  49. Reeks, M.W., Reed, J., Hall, D.: On the resuspension of small particles by a turbulent flow. J. Phys. D Appl. Phys. 21, 574–589 (1988)

    ADS  Google Scholar 

  50. Wenand, H.Y., Kasper, G.: On the kinetics of particle reentrainment from surfaces. J. Aerosol Sci. 20, 483–498 (1989)

    Google Scholar 

  51. Hersey, J.A.: Ordered mixing: A new concept in powder mixing practice. Powder Technol. 11, 41–44 (1975)

    Google Scholar 

  52. Corrigan, D.O., Corrigan, O.I., Healy, A.M.: Physicochemical and in vitro deposition properties of salbutamol sulphate/ipratropium bromide and salbutamol sulphate/excipient spray dried mixtures for use in dry powder inhalers. Int. J. Pharm. 322, 22–30 (2006)

    Google Scholar 

  53. Young, P., Roberts, D., Chiou, H., Rae, W., Chan, H.K., Traini, D.: Composite carriers improve the aerosolisation efficiency of drugs for respiratory delivery. J. Aerosol Sci. 39, 82–93 (2008)

    Google Scholar 

  54. Young, P.M., Kwok, P., Adi, H., Chan, H.K., Traini, D.: Lactose composite carriers for respiratory delivery. Pharm. Res. 26, 802–810 (2009)

    Google Scholar 

  55. Ooi, J., Traini, D., Hoe, S., Wong, W., Young, P.M.: Does carrier size matter? A fundamental study of drug aerosolisation from carrier based dry powder inhalation systems. Int. J. Pharm. 413, 1–9 (2011)

    Google Scholar 

  56. Adi, H., Traini, D., Chan, H.K., Young, P.M.: The influence of drug morphology on aerosolisation efficiency of dry powder inhaler formulations. J. Pharm. Sci. 97, 2780–2788 (2008)

    Google Scholar 

  57. Donovan, M.J., Smyth, H.D.: Influence of size and surface roughness of large lactose carrier particles in dry powder inhaler formulations. Int. J. Pharm. 402, 1–9 (2010)

    Google Scholar 

  58. Zhou, Q.T., Morton, D.A.: Drug-lactose binding aspects in adhesive mixtures: Controlling performance in dry powder inhaler formulations by altering lactose carrier surfaces. Adv. Drug Deliv. Rev. (2011)

    Google Scholar 

  59. Jones, M.D., Price, R.: The influence of fine excipient particles on the performance of carrier-based dry powder inhalation formulations. Pharm. Res. 23, 1665–1674 (2006)

    Google Scholar 

  60. Hooton, J.C., Jones, M.D., Price, R.: Predicting the behavior of novel sugar carriers for dry powder inhaler formulations via the use of a cohesive-adhesive force balance approach. J. Pharm. Sci. 95, 1288–1297 (2006)

    Google Scholar 

  61. Jones, M.D., Harris, H., Hooton, J.C., Shur, J., King, G.S., Mathoulin, C.A., Nichol, K., Smith, T.L., Dawson, M.L., Ferrie, A.R., Price, R.: An investigation into the relationship between carrier-based dry powder inhalation performance and formulation cohesive-adhesive force balances. Eur. J. Pharm. Biopharm. 69, 496–507 (2008)

    Google Scholar 

  62. Vehring, R.: Pharmaceutical particle engineering via spray drying. Pharm. Res. 25, 999–1022 (2008)

    Google Scholar 

  63. York, P.: Strategies for particle design using supercritical fluid technologies. Pharm. Sci. Technol. Today 2, 430–440 (1999)

    Google Scholar 

  64. Pilcer, G., Wauthoz, N., Amighi, K.: Lactose characteristics and the generation of the aerosol. Adv. Drug Deliv. Rev. 64, 233–256 (2012)

    Google Scholar 

  65. Pilcer, G., Amighi, K.: Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm. 392, 1–19 (2010)

    Google Scholar 

  66. Xu, Z., Mansour, H.M., Hickey, A.J.: Particle interactions in dry powder inhaler unit processes: A review. J. Adhes. Sci. Technol. 25, 451–482 (2011)

    Google Scholar 

  67. Chan, H.K.: What is the role of particle morphology in pharmaceutical powder aerosols? Expert Opin. Drug Deliv. 5, 909–914 (2008)

    Google Scholar 

  68. Frijlink, H.W., De Boer, A.H.: Dry powder inhalers for pulmonary drug delivery. Expert Opin. Drug Deliv. 1, 67–86 (2004)

    Google Scholar 

  69. Telko, M.J., Hickey, A.J.: Dry powder inhaler formulation. Respir. Care 50, 1209–1227 (2005)

    Google Scholar 

  70. Chan, H.K.: Dry powder aerosol delivery systems: Current and future research directions. J. Aerosol Med. 19, 21–27 (2006)

    Google Scholar 

  71. Smythand, H., Hickey, A.J.: Carriers in dry powder delivery: Implications for inhalation system design. Am. J. Drug Deliv. 3, 117–132 (2005)

    Google Scholar 

  72. Steckeland, H., Muller, B.W.: In vitro evaluation of dry powder inhalers II: Influence of carrier particle size and concentration on in vitro deposition. Int. J. Pharm. 154, 31–37 (1997)

    Google Scholar 

  73. Vanderbist, F., Wery, B., Moyano-Pavon, I., Moes, A.J.: Optimization of a dry powder inhaler formulation of nacystelyn, a new mucoactive agent. J. Pharm. Pharmacol. 51, 1229–1234 (1999)

    Google Scholar 

  74. Young, P.M., Wood, O., Ooi, J., Traini, D.: The influence of drug loading on formulation structure and aerosol performance in carrier based dry powder inhalers. Int. J. Pharm. 416, 129–135 (2011)

    Google Scholar 

  75. Wetterlin, K.: Turbuhaler: A new powder inhaler for administration of drugs to the airways. Pharm. Res. 5, 506–508 (1988)

    Google Scholar 

  76. Edwards, A.M., Chambers, A.: Comparison of a lactose-free formulation of sodium cromoglycate and sodium cromoglycate plus lactose in the treatment of asthma. Curr. Med. Res. Opin. 11, 283–292 (1989)

    Google Scholar 

  77. Zhou, Q.T., Qu, L., Larson, I., Stewart, P.J., Morton, D.A.: Improving aerosolization of drug powders by reducing powder intrinsic cohesion via a mechanical dry coating approach. Int. J. Pharm. 394, 50–59 (2010)

    Google Scholar 

  78. Zhou, Q.T., Armstrong, B., Larson, I., Stewart, P.J., Morton, D.A.: Understanding the influence of powder flowability, fluidization and de-agglomeration characteristics on the aerosolization of pharmaceutical model powders. Eur. J. Pharm. Sci. 40, 412–421 (2010)

    Google Scholar 

  79. Zhou, Q.T., Denman, J.A., Gengenbach, T., Das, S., Qu, L., Zhang, H., Larson, I., Stewart, P.J., Morton, D.A.: Characterization of the surface properties of a model pharmaceutical fine powder modified with a pharmaceutical lubricant to improve flow via a mechanical dry coating approach. J. Pharm. Sci. 100, 3421–3430 (2011)

    Google Scholar 

  80. Begat, P., Morton, D.A., Shur, J., Kippax, P., Staniforth, J.N., Price, R.: The role of force control agents in high-dose dry powder inhaler formulations. J. Pharm. Sci. 98, 2770–2783 (2009)

    Google Scholar 

  81. Raula, J., Lahde, A., Kauppinen, E.I.: Aerosolization behavior of carrier-free L-leucine coated salbutamol sulphate powders. Int. J. Pharm. 365, 18–25 (2009)

    Google Scholar 

  82. Raula, J., Thielmann, F., Naderi, M., Lehto, V.P., Kauppinen, E.I.: Investigations on particle surface characteristics vs. dispersion behaviour of L-leucine coated carrier-free inhalable powders. Int. J. Pharm. 385, 79–85 (2010)

    Google Scholar 

  83. Chew, N.Y., Shekunov, B.Y., Tong, H.H., Chow, A.H., Savage, C., Wu, J., Chan, H.K.: Effect of amino acids on the dispersion of disodium cromoglycate powders. J. Pharm. Sci. 94, 2289–2300 (2005)

    Google Scholar 

  84. Hickey, A.J.: Pulmonary drug delivery: Pharmaceutical chemistry and aerosol technology. In: Wang, B., Siahaan, T., Soltero, R.A. (eds.) Drug Delivery: Principles and Applications, pp. 341–361. Wiley, New Jersey (2005)

    Google Scholar 

  85. Van Oort, M., Sacchetti, M.: Spray-drying and supercritical fluid particle generation techniques. In: Hickey, A.J. (ed.) Inhalation Aerosols: Physical and Biological Basis for Therapy, vol. 1, pp. 307–346. Informa Healthcare, New York (2007)

    Google Scholar 

  86. Seville, P.C., Li, H.Y., Learoyd, T.P.: Spray-dried powders for pulmonary drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 24, 307–360 (2007)

    Google Scholar 

  87. Edwards, D.A., Hanes, J., Caponetti, G., Hrkach, J., Ben-Jebria, A., Eskew, M.L., Mintzes, J., Deaver, D., Lotan, N., Langer, R.: Large porous particles for pulmonary drug delivery. Science 276, 1868–1871 (1997). New York, NY

    Google Scholar 

  88. Tay, T., Das, S., Stewart, P.: Magnesium stearate increases salbutamol sulphate dispersion: What is the mechanism? Int. J. Pharm. 383, 62–69 (2010)

    Google Scholar 

  89. Young, P.M., Tobyn, M.J., Price, R., Buttrum, M., Dey, F.: The use of colloid probe microscopy to predict aerosolization performance in dry powder inhalers: AFM and in vitro correlation. J. Pharm. Sci. 95, 1800–1809 (2006)

    Google Scholar 

  90. Pilcer, G., Vanderbist, F., Amighi, K.: Spray-dried carrier-free dry powder tobramycin formulations with improved dispersion properties. J. Pharm. Sci. 98, 1463–1475 (2009)

    Google Scholar 

  91. Zeng, X.M., Martin, G.P., Tee, S.K., Ghoush, A.A., Marriott, C.: Effects of particle size and adding sequence of fine lactose on the deposition of salbutamol sulphate from a dry powder formulation. Int. J. Pharm. 182, 133–144 (1999)

    Google Scholar 

  92. Zeng, X.M., Pandhal, K.H., Martin, G.P.: The influence of lactose carrier on the content homogeneity and dispersibility of beclomethasone dipropionate from dry powder aerosols. Int. J. Pharm. 197, 41–52 (2000)

    Google Scholar 

  93. Traini, D., Young, P.M., Jones, M., Edge, S., Price, R.: Comparative study of erythritol and lactose monohydrate as carriers for inhalation: Atomic force microscopy and in vitro correlation. Eur. J. Pharm. Sci. 27, 243–251 (2006)

    Google Scholar 

  94. Sacchetti, M.: The nitrogen adsorption isotherm of alpha-lactose monohydrate. Pharm. Dev. Technol. 11, 351–358 (2006)

    Google Scholar 

  95. Young, P.M., Edge, S., Traini, D., Jones, M.D., Price, R., El-Sabawi, D., Urry, C., Smith, D.C.: The influence of dose on the performance of dry powder inhalation systems. Int. J. Pharm. 296, 26–33 (2005)

    Google Scholar 

  96. Ho, R., Muresan, A.S., Hebbink, G.A., Heng, J.Y.: Influence of fines on the surface energy heterogeneity of lactose for pulmonary drug delivery. Int. J. Pharm. 388, 88–94 (2010)

    Google Scholar 

  97. Louey, M.D., Stewart, P.J.: Particle interactions involved in aerosol dispersion of ternary interactive mixtures. Pharm. Res. 19, 1524–1531 (2002)

    Google Scholar 

  98. Jones, M.D., Santo, J.G., Yakub, B., Dennison, M., Master, H., Buckton, G.: The relationship between drug concentration, mixing time, blending order and ternary dry powder inhalation performance. Int. J. Pharm. 391, 137–147 (2010)

    Google Scholar 

  99. Jones, M.D., Hooton, J.C., Dawson, M.L., Ferrie, A.R., Price, R.: An investigation into the dispersion mechanisms of ternary dry powder inhaler formulations by the quantification of interparticulate forces. Pharm. Res. 25, 337–348 (2008)

    Google Scholar 

  100. Clineand, D., Dalby, R.: Predicting the quality of powders for inhalation from surface energy and area. Pharm. Res. 19, 1274–1277 (2002)

    Google Scholar 

  101. Adi, H., Larson, I., Chiou, H., Young, P., Traini, D., Stewart, P.: Role of agglomeration in the dispersion of salmeterol xinafoate from mixtures for inhalation with differing drug to fine lactose ratios. J. Pharm. Sci. 97, 3140–3152 (2008)

    Google Scholar 

  102. Adi, H., Larson, I., Stewart, P.J.: Adhesion and redistribution of salmeterol xinafoate particles in sugar-based mixtures for inhalation. Int. J. Pharm. 337, 229–238 (2007)

    Google Scholar 

  103. Adi, H., Larson, I., Chiou, H., Young, P., Traini, D., Stewart, P.: Agglomerate strength and dispersion of salmeterol xinafoate from powder mixtures for inhalation. Pharm. Res. 23, 2556–2565 (2006)

    Google Scholar 

  104. Louey, M.D., VanOort, M., Hickey, A.J.: Standardized entrainment tubes for the evaluation of pharmaceutical dry powder dispersion. J. Aerosol Sci. 73, 1520–1533 (2006)

    Google Scholar 

  105. Xu, Z., Mansour, H.M., Mulder, T., McLean, R., Langridge, J., Hickey, A.J.: Heterogeneous particle deaggregation and its implication for therapeutic aerosol performance. J. Pharm. Sci. 99, 3442–3461 (2010)

    Google Scholar 

  106. Xu, Z., Mansour, H.M., Mulder, T., McLean, R., Langridge, J., Hickey, A.J.: Dry powder aerosols generated by standardized entrainment tubes from drug blends with lactose monohydrate: 1. Albuterol sulfate and disodium cromoglycate. J. Pharm. Sci. 99, 3398–3414 (2010)

    Google Scholar 

  107. Xu, Z., Mansour, H.M., Mulder, T., McLean, R., Langridge, J., Hickey, A.J.: Dry powder aerosols generated by standardized entrainment tubes from drug blends with lactose monohydrate: 2. Ipratropium bromide monohydrate and fluticasone propionate. J. Pharm. Sci. 99, 3415–3429 (2010)

    Google Scholar 

  108. Mansour, H.M., Xu, Z., Hickey, A.J.: Dry powder aerosols generated by standardized entrainment tubes from alternative sugar blends: 3. Trehalose dihydrate and D-mannitol carriers. J. Pharm. Sci. 99, 3430–3441 (2010)

    Google Scholar 

  109. Freundlich, H.M.F.: Over the adsorption in solution. J. Phys. Chem. 57, 385–470 (1906)

    Google Scholar 

  110. Do, D.D.: Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London (1998)

    Google Scholar 

  111. Giles, C.H., Smith, D., Huitson, A.: A general treatment and classification of the solute adsorption isotherm I. Theoretical. J. Colloid Interface Sci. 47, 755–765 (1974)

    Google Scholar 

  112. Giles, C.H., Smith, D., Huitson, A.: A general treatment and classification of the solute adsorption isotherm II. Experimental interpretation. J. Colloid Interface Sci. 47, 766–778 (1974)

    Google Scholar 

  113. Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    ADS  Google Scholar 

  114. Hickey, A.J., Ganderton, D.: Fluid flow. In: Hickey, A.J., Ganderton, D. (eds.) Pharmaceutical Process Engineering, pp. 4–30. Informa Healthcare USA, New York (2010)

    Google Scholar 

  115. Pope, S.B.: Wall flows. In: Pope, S.B. (ed.) Turbulent Flows, pp. 264–332. Cambridge University Press, Cambridge, UK (2000)

    Google Scholar 

  116. Shekunov, B.Y., Feeley, J.C., Chow, A.H., Tong, H.H., York, P.: Aerosolization behavior of micronized and supercritically-processed powders. J. Aerosol Sci. 34, 553–568 (2003)

    Google Scholar 

  117. Clarkand, A.R., Hollingsworth, A.M.: The relationship between powder inhaler resistance and peak inspiratory conditions in healthy volunteers – implications for in vitro testing. J. Aerosol Med. 6, 99–110 (1993)

    Google Scholar 

  118. Mendes, P.J., Pinto, J.F., Sousa, J.M.M.: A non-dimensional functional relationship for the fine particle fraction produced by dry powder inhalers. J. Aerosol Sci. 38, 612–624 (2007)

    Google Scholar 

  119. de Boer, A.H., Winter, H.M.I., Lerk, C.F.: Inhalation characteristics and their effects on in vitro drug delivery from dry powder inhalers part 1. Inhalation characteristics, work of breathing and volunteers’ preference in dependence of the inhaler resistance. Int. J. Pharm. 130, 231–244 (1996)

    Google Scholar 

  120. Islamand, N., Gladki, E.: Dry powder inhalers (DPIs)–a review of device reliability and innovation. Int. J. Pharm. 360, 1–11 (2008)

    Google Scholar 

  121. Newman, S.P., Peart, J.: Dry powder inhalers. In: Newman, S.P. (ed.) Respiratory Drug Delivery: Essential Theory and Practice, pp. 257–307. Respiratory Drug Delivery Online/VCU, Richmond (2009)

    Google Scholar 

  122. Hickey, A.J., Crowder, T.M.: Next generation dry powder inhalation delivery systems. In: Hickey, A.J. (ed.) Inhalation Aerosols: Physical and Biological Basis for Therapy, vol. 221, pp. 445–460. Informa Healthcare USA, New York (2007)

    Google Scholar 

  123. Smith, I.J., Parry-Billings, M.: The inhalers of the future?A review of dry powder devices on the market today. Pulm. Pharmacol. Ther. 16, 79–95 (2003)

    Google Scholar 

  124. Menter, F.R.: Two-equation eddy-viscosity models for engineering applications. AIAA J. 32, 1598–1605 (1994)

    ADS  Google Scholar 

  125. Coates, M.S., Fletcher, D.F., Chan, H.K., Raper, J.A.: The role of capsule on the performance of a dry powder inhaler using computational and experimental analyses. Pharm. Res. 22, 923–932 (2005)

    Google Scholar 

  126. Coates, M.S., Chan, H.K., Fletcher, D.F., Raper, J.A.: Influence of air flow on the performance of a dry powder inhaler using computational and experimental analyses. Pharm. Res. 22, 1445–1453 (2005)

    Google Scholar 

  127. Coates, M.S., Chan, H.K., Fletcher, D.F., Chiou, H.: Influence of mouthpiece geometry on the aerosol delivery performance of a dry powder inhaler. Pharm. Res. 24, 1450–1456 (2007)

    Google Scholar 

  128. Wong, W., Adi, H., Traini, D., Chan, H.K., Fletcher, D.F., Crapper, J., Young, P.: Use of rapid prototyping and computational fluid dynamics in the design the DPI devices. Respir. Drug Deliv. 3, 879–882 (2010)

    Google Scholar 

  129. Donovan, M.J., Kim, S.H., Raman, V., Smyth, H.D.: Dry powder inhaler device influence on carrier particle performance. J. Pharm. Sci. 101, 1097–1107 (2012)

    Google Scholar 

  130. Calvert, G., Ghadiri, M., Tweedie, R.: Aerodynamic dispersion of cohesive powders: A review of understanding and technology. Adv. Powder Technol. 20, 4–16 (2009)

    Google Scholar 

  131. Wong, W., Fletcher, D.F., Traini, D., Chan, H.K., Crapper, J., Young, P.M.: Particle aerosolisation and break-up in dry powder inhalers: Evaluation and modelling of the influence of grid structures for agglomerated systems. J. Pharm. Sci. 100, 4710–4721 (2011)

    Google Scholar 

  132. Wong, W., Fletcher, D.F., Traini, D., Chan, H.K., Crapper, J., Young, P.M.: Particle aerosolisation and break-up in dry powder inhalers 1: Evaluation and modelling of venturi effects for agglomerated systems. Pharm. Res. 27, 1367–1376 (2010))

    Google Scholar 

  133. Wong, W., Fletcher, D.F., Traini, D., Chan, H.K., Crapper, J., Young, P.M.: Particle aerosolisation and break-up in dry powder inhalers: Evaluation and modelling of impaction effects for agglomerated systems. J. Pharm. Sci. 100, 2744–2754 (2011)

    Google Scholar 

  134. USP: The United States Pharmacopeia. U.S. Pharmacopeial Convention, Rockville (2004)

    Google Scholar 

  135. Physical test and determinations, <601 > Aerosols, nasal sprays, metered-dose inhalers, and dry powder inhalers, USP, pp. 220–240

    Google Scholar 

  136. Guidance_for_industry.: Pharmaceutical quality of inhalation and nasal products, pp. 1–32. Canada or EU (2006). http://www.hc-sc.gc.ca/dhp-mps/alt_formats/hpfb-dgpsa/pdf/prodpharma/inhalationnas-eng.pdf

  137. Committee_for_proprietary_medicinal_products.: Note for guidance on dry powder inhalers, pp. 1–6. London (1998)

    Google Scholar 

  138. Persson, G., Ankerst, J., Gillen, M., Bengtsson, T., Thorsson, L.: Relative systemic availability of budesonide in patients with asthma after inhalation from two dry powder inhalers. Curr. Med. Res. Opin. 24, 1511–1517 (2008)

    Google Scholar 

  139. Taki, M., Ahmed, S., Marriott, C., Zeng, X.M., Martin, G.P.: The ‘stage-by-stage’ deposition of drugs from commercial single-active and combination dry powder inhaler formulations. Eur. J. Pharm. Sci. 43, 225–235 (2011)

    Google Scholar 

  140. Shiand, S., Hickey, A.J.: Multivariate data analysis as a semi-quantitative tool for interpretive evaluation of comparability or equivalence of aerodynamic particle size distribution profiles. AAPS Pharm. Sci. Technol. 10, 1113–1120 (2009)

    Google Scholar 

  141. Behara, S.R., Larson, I., Kippax, P., Morton, D.A., Stewart, P.: The kinetics of cohesive powder de-agglomeration from three inhaler devices. Int. J. Pharm. 421, 72–81 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Hickey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hickey, A.J., Xu, Z. (2014). Dry Powder Inhalers. In: Merkus, H., Meesters, G. (eds) Particulate Products. Particle Technology Series, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-00714-4_10

Download citation

Publish with us

Policies and ethics