Skip to main content

Plant Defense Activators: Application and Prospects in Cereal Crops

  • Chapter
  • First Online:
50 Years of Phytochemistry Research

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 43))

  • 890 Accesses

Abstract

Cereal grains are one of the primary sources of food products in the world. Increased productivity in crop yield, particularly for cereal crops, is absolutely essential for future food security, but is impeded by disease, with annual estimates ranging from 10 to 30 % crop loss due to disease alone. There have been remarkable advances in understanding pest and disease resistance in plants in the past three decades, with the application of chemical plant defense activators (PDAs) being of particular interest. The advances in recent years in understanding the molecular basis for systemic acquired resistance (SAR), induced systemic resistance (ISR), priming, and next-generation immunity portend a wider role for PDAs. These agrochemicals are gaining some acceptance in Europe where there is a strong interest in curtailing the use of more traditional fungicides and pesticides. Much work, however, is needed to understand the effects of nutrition, dose rates, timing of application, and genotypic effects in the application of PDAs. This review addresses the current understanding of plant immunity, particularly with respect to cereal crops and the potential for PDAs to enhance the potential yield and nutritional quality of cereal crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett AJ et al (2012) Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biol Rev Camb Philos Soc 87:52

    PubMed  Google Scholar 

  2. Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83

    PubMed  CAS  Google Scholar 

  3. Flor HH (1955) Host-parasite interaction in Flax rust-its genetics and other implications. Phytopathology 45:680

    Google Scholar 

  4. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323

    PubMed  CAS  Google Scholar 

  5. Felix G et al (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265

    PubMed  CAS  Google Scholar 

  6. Kunze G et al (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in arabidopsis plants. Plant Cell 16:3496

    PubMed  CAS  Google Scholar 

  7. Zipfel C et al (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts agrobacterium-mediated transformation. Cell 125:749

    PubMed  CAS  Google Scholar 

  8. Spoel SH, Dong X (2012) How do plants achieve immunity? Defense without specialized immune cells. Nat Rev Immunol 12:89

    PubMed  CAS  Google Scholar 

  9. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379

    PubMed  CAS  Google Scholar 

  10. He SY (1998) Type III protein secretion systems in plant and animal pathogenic bacteria. Annu Rev Phytopathol 36:363

    PubMed  CAS  Google Scholar 

  11. Whisson SC et al (2007) A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450:115

    PubMed  CAS  Google Scholar 

  12. Kale SD et al (2010) External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell 142:284

    PubMed  CAS  Google Scholar 

  13. Bozkurt TO et al (2012) Oomycetes, effectors, and all that jazz. Curr Opin Plant Biol 15:483

    PubMed  Google Scholar 

  14. Kloek AP (2001) Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. Plant J 26:509

    PubMed  CAS  Google Scholar 

  15. Uppalapati SR et al (2007) The phytotoxin coronatine contributes to pathogen fitness and Is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact 20:955

    PubMed  CAS  Google Scholar 

  16. Beckers GJM, Spoel SH (2006) Fine-tuning plant defense signaling: salicylate versus jasmonate. Plant Biol 8:1

    PubMed  CAS  Google Scholar 

  17. Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325

    PubMed  CAS  Google Scholar 

  18. Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399

    PubMed  CAS  Google Scholar 

  19. De Wit PJGM et al (2009) Fungal effector proteins: past, present and future. Mol Plant Pathol 10:735

    Google Scholar 

  20. Ross AF (1961) Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340

    PubMed  CAS  Google Scholar 

  21. Sticher L et al (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235

    PubMed  CAS  Google Scholar 

  22. White RF (1979) Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99:410

    PubMed  CAS  Google Scholar 

  23. Gaffney T et al (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754

    PubMed  CAS  Google Scholar 

  24. Malamy J et al (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002

    PubMed  CAS  Google Scholar 

  25. Delaney TP et al (1994) A central role of salicylic acid in plant disease resistance. Science 266:1247

    PubMed  CAS  Google Scholar 

  26. Vlot AC et al (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177

    PubMed  CAS  Google Scholar 

  27. Dong X (2004) NPR1, all things considered. Curr Opin Plant Biol 7:547

    PubMed  CAS  Google Scholar 

  28. Cao H et al (1994) Characterization of an Arabidopsis mutant that Is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583

    PubMed  CAS  Google Scholar 

  29. Glazebrook J (2001) Genes controlling expression of defense responses in Arabidopsis: 2001 status. Curr Opin Plant Biol 4:301

    PubMed  CAS  Google Scholar 

  30. Spoel SH, Loake GJ (2011) Redox-based protein modifications: the missing link in plant immune signalling. Curr Opin Plant Biol 14:358

    PubMed  CAS  Google Scholar 

  31. Spoel SH et al (2009) Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137:860

    PubMed  CAS  Google Scholar 

  32. Mou Z et al (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935

    PubMed  CAS  Google Scholar 

  33. Jung HW et al (2009) Priming in systemic plant immunity. Science 324:89

    PubMed  Google Scholar 

  34. Chanda B et al (2011) Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nat Genet 43:421

    PubMed  CAS  Google Scholar 

  35. Maldonado AM et al (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399

    PubMed  CAS  Google Scholar 

  36. Heil M, Ton J (2008) Long-distance signaling in plant defense. Trends Plant Sci 13:264

    PubMed  CAS  Google Scholar 

  37. Tamogami S et al (2011) Jasmonates to jamolites in plants: past, present, future. Adv Bot Res 60:309

    CAS  Google Scholar 

  38. Shah J (2009) Plants under attack: systemic signals in defense. Curr Opin Plant Biol 12:459

    PubMed  CAS  Google Scholar 

  39. van Loon LC et al (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol. 36:453

    Google Scholar 

  40. Shoresh M et al (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21

    PubMed  CAS  Google Scholar 

  41. Hammerschmidt R (2007) Introduction: definitions and some history. In: Walters DR, Newton A, Lyon G (eds) Induced resistance for Plant defence. Blackwell, Oxford, pp 1–8

    Google Scholar 

  42. Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920

    Google Scholar 

  43. Conrath U (2009) Priming of induced plant defense responses. In: L. C. van Loon (ed) Advances in Botanical Research, vol. 51. Academic Press, pp 361–395

    Google Scholar 

  44. Conrath U et al (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062

    PubMed  CAS  Google Scholar 

  45. Kauss H et al (1992) Dichloroisonicotinic and salicylic acid, inducers of systemic acquired resistance, enhance fungal elicitor responses in parsley cells. Plant J 2:655

    CAS  Google Scholar 

  46. Katz VA et al (1998) A benzothiadiazole primes parsley cells for augmented elicitation of defense responses. Plant Physiol 117:1333

    PubMed  CAS  Google Scholar 

  47. Heil M et al (2000) Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? J Ecology 88:645

    CAS  Google Scholar 

  48. Beckers GJM et al (2009) Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:944

    PubMed  CAS  Google Scholar 

  49. Pfluger J, Wagner D (2007) Histone modifications and dynamic regulation of genome accessibility in plants. Curr Opin Plant Biol 10:645

    PubMed  CAS  Google Scholar 

  50. Zhang X (2008) The epigenetic landscape of plants. Science 320:489

    PubMed  CAS  Google Scholar 

  51. Bannister AJ et al (2002) Histone methylation: dynamic or static? Cell 109:801

    PubMed  CAS  Google Scholar 

  52. Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16:524

    PubMed  CAS  Google Scholar 

  53. Vaillant I, Paszkowski J (2007) Role of histone and DNA methylation in gene regulation. Curr Opin Plant Biol 10:528

    PubMed  CAS  Google Scholar 

  54. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366

    PubMed  CAS  Google Scholar 

  55. Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648

    PubMed  CAS  Google Scholar 

  56. Rushton PJ et al (2010) WRKY transcription factors. Trends Plant Sci 15:247

    PubMed  CAS  Google Scholar 

  57. Jaskiewicz M et al (2011) Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12:50

    PubMed  CAS  Google Scholar 

  58. Luna E et al (2012) Next-generation systemic acquired resistance. Plant Physiol 158:844

    PubMed  CAS  Google Scholar 

  59. Pavet V et al (2006) Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by Pseudomonas syringae. Mol Plant Microbe Interact 19:577

    PubMed  CAS  Google Scholar 

  60. Wada Y et al (2004) Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Mol Genet Genomics 271:658

    PubMed  CAS  Google Scholar 

  61. Slaughter A et al (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835

    PubMed  CAS  Google Scholar 

  62. Leadbeater A, Staub T (2007) Exploitation of induced resistance: a commercial perspective. In: Walters DR, Newton A, Lyon G (eds) Induced resistance for plant defence. Blackwell, Oxford pp 229–242

    Google Scholar 

  63. Midoh N, Iwata M (1996) Cloning and characterization of a probenazole-inducible gene for an intracellular pathogenesis-related protein in rice. Plant Cell Physiol 37:9

    PubMed  CAS  Google Scholar 

  64. Kessmann H et al (1994) Induction of systemic acquired disease resistance in plants by chemicals. Annu Rev Phytopathol 32:43

    Google Scholar 

  65. Gorlach J et al (1996) Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8:629

    PubMed  CAS  Google Scholar 

  66. Tsubata K et al (2006) Development of a novel plant activator for rice diseases, tiadinil. J Pest Sci 31:161

    CAS  Google Scholar 

  67. Walters DR, Fountaine JM (2009) Practical application of induced resistance to plant diseases: an appraisal of effectiveness under field conditions. J Agric Sci 147:523

    CAS  Google Scholar 

  68. Chen L et al (2008) A fragment of the Xanthomonas oryzae pv. oryzicola Harpin HpaGXooc reduces disease and increases yield of rice in extensive grower plantings. Phytopathology 98:792

    PubMed  Google Scholar 

  69. Sharathchandra RG et al (2004) A Chitosan formulation Elexa induces downy mildew disease resistance and growth promotion in pearl millet. Crop Prot 23:881

    CAS  Google Scholar 

  70. Thanassoulopoulos CC et al (2007) Development of an empirical model to predict losses in eggplant (Solanum melongena L.) production caused by Verticillium wilt. Crop Prot 26:08

    Google Scholar 

  71. Anderson JP et al (2005) Plant defence responses: conservation between models and crops. Funct Plant Biol 32:21

    CAS  Google Scholar 

  72. Chern M-S et al (2001) Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J 27:101

    PubMed  CAS  Google Scholar 

  73. Fitzgerald HA et al (2005) Alteration of TGA factor activity in rice results in enhanced tolerance to Xanthomonas oryzae pv. oryzae. Plant J 43:335

    PubMed  CAS  Google Scholar 

  74. Proietti S et al (2011) Cross activity of orthologous WRKY transcription factors in wheat and Arabidopsis. J Exp Bot 62:1975

    PubMed  CAS  Google Scholar 

  75. Silverman P et al (1995) Salicylic acid in rice (biosynthesis, conjugation, and possible role). Plant Physiol 108:633

    PubMed  CAS  Google Scholar 

  76. Kogel KH et al (1994) Acquired resistance in barley (The resistance mechanism induced by 2,6-dichloroisonicotinic acid is a phenocopy of a genetically based mechanism governing race-specific powdery mildew resistance). Plant Physiol 106:1269

    PubMed  CAS  Google Scholar 

  77. Molina A et al (1999) Wheat genes encoding two types of PR-1 proteins are pathogen inducible, but do not respond to activators of systemic acquired resistance. Mol Plant Microbe Interact 12:53

    PubMed  CAS  Google Scholar 

  78. Kogel K-H, Langen G (2005) Induced disease resistance and gene expression in cereals. Cell Microbiol 7:1555

    PubMed  CAS  Google Scholar 

  79. Shimono M et al (2007) Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell 19:2064

    PubMed  CAS  Google Scholar 

  80. Takatsuji H et al (2010) Salicylic acid signaling pathway in rice and the potential applications of its regulators. Jpn Agric Res Q 44:217

    CAS  Google Scholar 

  81. Yu GY, Muehlbauer GJ (2001) Benzothiadiazole-induced gene expression in wheat spikes does not provide resistance to Fusarium head blight. Physiol Mol Plant Pathol 59:129

    CAS  Google Scholar 

  82. Makandar R et al (2012) Salicylic acid regulates basal resistance to Fusarium head blight in wheat. Mol Plant Microbe Interact 25:431

    PubMed  CAS  Google Scholar 

  83. Mayama S et al (1995) Association between avenalumin accumulation, infection hypha length and infection type in oat crosses segregating for resistance to Puccinia coronata f. sp. avenae race 226. Physiol Mol Plant Pathol 46:255

    Google Scholar 

  84. Mayama S, Matsuura Y, Inda H, Tani T (1982) The role of avenalumin in the resistance of oat to crown rust, Puccinia coronata f. sp avenae. Physiol Plant Pathol 20:189

    CAS  Google Scholar 

  85. Meydani M (2009) Potential health benefits of avenanthramides of oats. Nutr Rev 67:731

    PubMed  Google Scholar 

  86. Emmons CL, Peterson DM (2001) Antioxidant activity and phenolic content of oat as affected by cultivar and location. Crop Sci 41:1676

    CAS  Google Scholar 

  87. Wise ML, Doehlert DC, McMullen MS (2008) Association of avenanthramide concentration in oat (Avena sativa L.) grain with crown rust incidence and genetic resistance. Cereal Chem 85:639

    CAS  Google Scholar 

  88. Wise ML (2011) Effect of chemical systemic acquired resistance elicitors on avenanthramide biosynthesis in oat (Avena sativa). J Agric Food Chem 59:7028

    PubMed  CAS  Google Scholar 

  89. Ren Y, Wise ML (2012) Avenanthramide biosynthesis in oat cultivars treated with systemic acquired resistance elicitors. Cereal Research Comm. doi:10.1556/CRC.2012.0035

    Google Scholar 

  90. Wu X et al (2007) Productivity and biochemical properties of green tea in response to full-length and functional fragments of HpaGXooc, a harpin protein from the bacterial rice leaf streak pathogen Xanthomonas oryzae pv. oryzicola. J Biosci 32:1119

    PubMed  CAS  Google Scholar 

  91. Heil M (2007) Trade-offs associated with induced resistance. In: Walters DR, Newton A, Lyon G (eds) Induced resistance for plant defence: a sustainable approach to crop protection. Blackwell, Oxford, pp 157–177

    Google Scholar 

  92. Walters DR et al (2011) Possible trade-off associated with the use of a combination of resistance elicitors. Physiol Molec Plant Pathol 75:188

    CAS  Google Scholar 

  93. Thaler J et al (1999) Trade-offs in plant defense against pathogens and herbivores: a field demonstration of chemical elicitors of induced resistance. J Chem Ecol 25:1597

    CAS  Google Scholar 

  94. van Hulten M et al (2006) Costs and benefits of priming for defense in Arabidopsis. Nat Acad Sci Proc 103:5602

    Google Scholar 

  95. Boyle C, Walters DR (2006) Saccharin-induced protection against powdery mildew in barley: effects on growth and phenylpropanoid metabolism. Plant Pathol 55:82

    CAS  Google Scholar 

  96. Walters DR et al (2008) Priming for plant defense in barley provides benefits only under high disease pressure. Physiol Mol Plant Pathol 73:95

    CAS  Google Scholar 

  97. Lucas JA (2011) Advances in plant disease and pest management. J Agric Sci 149(Supplement S1):91

    Google Scholar 

  98. Ishii H (2007) Fungicide research in Japan-an overview. 15th International Reinhardsbrunn Symposium on Modern Fungicides and Antifungal Compounds, pp 11–17

    Google Scholar 

  99. Walters DR (2010) Induced resistance: destined to remain on the sidelines of crop protection? Phytoparasitica 38:1

    Google Scholar 

  100. Stadnik MJ, Buchenauer H (1999) Control of wheat diseases by a benzothiadiazole derivative and modern fungicides. J Plant Dis Protect 106:466

    CAS  Google Scholar 

  101. Roden LC, Ingle RA (2009) Lights, rhythms, infection: the role of light and the circadian clock in determining the outcome of plant-pathogen interactions. Plant Cell 21:2546

    PubMed  CAS  Google Scholar 

  102. Walters DR, Havis ND, Paterson L, Taylor J, Walsh DJ (2011) Cultivar effects on the expression of induced resistance in spring barley. Plant Dis 95:595

    Google Scholar 

  103. Reglinski T et al (2007) Integration of induced resistance in crop production. In: Walters DR, Newton A, Lyon G (eds) Induced resistance for plant defence. Blackwell, Oxford, pp 201–228

    Google Scholar 

  104. Yi H-S et al (2009) Airborne induction and priming of plant defenses against a bacterial pathogen. Plant Physiol 15:2152

    Google Scholar 

  105. Alborn HT et al (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945

    CAS  Google Scholar 

  106. Turlings TCJ et al (2000) Volocitin, an elicitor of maize volatiles in oral secretion of Spodoptera exigua: isolation and bioactivity. J Chem Ecol 26:189

    CAS  Google Scholar 

  107. Engelberth J et al (2004) Airborne signals prime plants against insect herbivore attack. Nat Acad Sci Proc 101:1781

    CAS  Google Scholar 

  108. Ton J et al (2006) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49:16

    PubMed  Google Scholar 

  109. Piesik D et al (2011) Cereal crop volatile organic compound induction after mechanical injury, beetle herbivory (Oulema spp.), or fungal infection (Fusarium spp.). J Plant Physiol 168:878

    PubMed  CAS  Google Scholar 

  110. Degenhardt J (2009) Indirect defense responses to herbivory in grasses. Plant Physiol 149:96

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell L. Wise .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wise, M. (2013). Plant Defense Activators: Application and Prospects in Cereal Crops. In: Gang, D. (eds) 50 Years of Phytochemistry Research. Recent Advances in Phytochemistry, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-319-00581-2_4

Download citation

Publish with us

Policies and ethics