Skip to main content

Do Evolutionary Algorithms Indeed Require Random Numbers? Extended Study

  • Conference paper
Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 210))

Abstract

An inherent part of evolutionary algorithms, that are based on Darwin theory of evolution and Mendel theory of genetic heritage, are random processes. In this participation, we discuss whether are random processes really needed in evolutionary algorithms. We use \(\mathcal{n}\) periodic deterministic processes instead of random number generators and compare performance of evolutionary algorithms powered by those processes and by pseudo-random number generators. Deterministic processes used in this participation are based on deterministic chaos and are used to generate periodical series with different length. Results presented here are numerical demonstration rather than mathematical proofs. We propose that a certain class of deterministic processes can be used instead of random number generators without lowering of evolutionary algorithms performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zelinka, I., Celikovsky, S., Richter, H., Chen, G.: Evolutionary Algorithms and Chaotic Systems, p. 550. Springer, Germany (2010)

    Book  MATH  Google Scholar 

  2. Lozi, R.: Emergence Of Randomness From Chaos. International Journal of Bifurcation and Chaos 22(2), 1250021 (2012), doi:10.1142/S0218127412500216

    Article  MathSciNet  Google Scholar 

  3. Wang, X.-Y., Qin, X.: A new pseudo-random number generator based on CML and chaotic iteration. Nonlinear Dynamics An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems 70(2), 1589–1592 (2012) ISSN 0924-090X, doi:10.1007/s11071-012-0558-0

    MathSciNet  Google Scholar 

  4. Pareek, N.K., Patidar, V., Sud, K.K.: A Random Bit Generator Using Chaotic Maps. International Journal of Network Security 10(1), 32–38 (2010)

    Google Scholar 

  5. Wang, X.-Y., Lei, Y.: Design Of Pseudo-Random Bit Generator Based On Chaotic Maps. International Journal of Modern Physics B 26(32), 1250208 (9 pages) (2012), doi:10.1142/S0217979212502086

    Article  MathSciNet  Google Scholar 

  6. Zhang, S.Y., Xingsheng, L.G.: A hybrid co-evolutionary cultural algorithm based on particle swarm optimization for solving global optimization problems. In: International Conference on Life System Modeling and Simulation / International Conference on Intelligent Computing for Sustainable Energy and Environment (LSMS-ICSEE), Wuxi, Peoples R China, September 17-20 (2010)

    Google Scholar 

  7. Hong, W.-C., Dong, Y., Zhang, Wen, Y., Chen, L.-Y., B.K., P.: Cyclic electric load forecasting by seasonal SVR with chaotic genetic algorithm. International Journal of Electrical Power and Energy Systems 44(1), 604–614, doi:10.1016/j.ijepes.2012.08.010

    Google Scholar 

  8. Zelinka, I.: SOMA – Self Organizing Migrating Algorithm. In: Babu, B.V., Onwubolu, G. (eds.) New Optimization Techniques in Engineering, pp. 167–218. Springer, New York

    Google Scholar 

  9. Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London

    Google Scholar 

  10. Glover, F., Laguna, M.: Scatter Search. In: Ghosh, A., Tsutsui, S. (eds.) Advances in Evolutionary Computation: Theory and Applications, pp. 519–537. Springer, New York (2003)

    Google Scholar 

  11. Beyer, H.-G.: Theory of Evolution Strategies. Springer, New York (2001)

    Google Scholar 

  12. Holland, J.H.: Genetic Algorithms. Scientific American, 44–50 (July 1992)

    Google Scholar 

  13. Clerc, M.: Particle Swarm Optimization. ISTE Publishing Company (2006) ISBN 1905209045

    Google Scholar 

  14. Pluhacek, M., Senkerik, R., Zelinka, I.: Impact of various chaotic maps on the performance of chaos enhanced PSO algorithm with inertia weight – an initial study. In: Zelinka, I., Snasel, V., Rössler, O.E., Abraham, A., Corchado, E.S. (eds.) Nostradamus: Mod. Meth. of Prediction, Modeling. AISC, vol. 192, pp. 153–166. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Pluhacek, M., Senkerik, R., Davendra, D., Zelinka, I.: Designing PID controller for DC motor by means of enhanced PSO algorithm with dissipative chaotic map. In: Snasel, V., Abraham, A., Corchado, E.S. (eds.) SOCO Models in Industrial & Environmental Appl. AISC, vol. 188, pp. 475–483. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Yang, M., Guan, J., Cai, Z., Wang, L.: Self-adapting differential evolution algorithm with chaos random for global numerical optimization. In: Cai, Z., Hu, C., Kang, Z., Liu, Y. (eds.) ISICA 2010. LNCS, vol. 6382, pp. 112–122. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Coelho, L., Mariani, V.: Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect. IEEE Transactions On Power Systems 21(2), 989–996 (2006), doi:10.1109/TPWRS.2006.873410

    Article  Google Scholar 

  18. Hu, G.-W.: Chaos-differential evolution for multiple sequence alignment. In: 3rd International Symposium on Intelligent Information Technology Application, Nanchang, Peoples R China, vol. 2, pp. 556–558., doi:10.1109/IITA.2009.511

    Google Scholar 

  19. Zhao, Q., Ren, J., Zhang, Z., Duan, F.: Immune co-evolution algorithm based on chaotic optimization. In: Workshop on Intelligent Information Technology Application (IITA 2007), Zhang Jiajie, Peoples R China, pp. 149–152 (2007)

    Google Scholar 

  20. Peng, C., Sun, H., Guo, J., Liu, G.: Dynamic economic dispatch for wind-thermal power system using a novel bi-population chaotic differential evolution algorithm. International Journal of Electrical Power & Energy Systems 42(1), 119–126 (2012), doi:10.1016/j.ijepes.2012.03.012

    Article  Google Scholar 

  21. Zhang, H., Zhou, J., Zhang, Y., Fang, N., Zhang, R.: Short term hydrothermal scheduling using multi-objective differential evolution with three chaotic sequences. International Journal of Electrical Power & Energy Systems 47, 85–99 (2013), doi:10.1016/j.ijepes.2012.10.014

    Article  Google Scholar 

  22. Zou, X., Wang, M., Zhou, A., McKay, B.: Evolutionary optimization based on chaotic sequence in dynamic environments. In: 2004 IEEE International Conference on Networking, Sensing and Contro, vol. 2, pp. 1364–1369 (2004)

    Google Scholar 

  23. Liua, B., Wanga, L., Jina, Y.-H., Tangb, F., Huanga, D.-X.: Improved particle swarm optimization combined with chaos. Chaos, Solitons & Fractals 25(5), 1261–1271 (2005)

    Article  Google Scholar 

  24. Song, Y.: A bi-directional chaos optimization algorithm. In: 2010 Sixth International Conference on Natural Computation (ICNC), August 10-12, vol. 5, pp. 2202–2206 (2010)

    Google Scholar 

  25. Gandomi, A., Yun, G., Yang, X., Talatahari, S.: Chaos-enhanced accelerated particle swarm optimization. Communications In Nonlinear Science and Numerical Simulation 18(2), 327–340 (2013), doi:10.1016/j.cnsns.2012.07.017

    Article  MathSciNet  MATH  Google Scholar 

  26. Matousek, R.: HC12: The Principle of CUDA Implementation. In: Matousek (ed.) 16th International Conference on Soft Computing, MENDEL 2010, Brno, pp. 303–308 (2010)

    Google Scholar 

  27. Matousek, R., Zampachova, E.: Promising GAHC and HC12 algorithms in global optimization tasks. Journal Optimization Methods & Software 26(3), 405–419 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Matousek, R.: GAHC: Improved Genetic Algorithm. In: Krasnogor, N., Nicosia, G., Pavone, M., Pelta, D. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2007). SCI, vol. 129, pp. 507–520. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  29. Zelinka, I., Davendra, D., Senkerik, R., Jasek, R., Oplatkova, Z.: Analytical Programming - a Novel Approach for Evolutionary Synthesis of Symbolic Structures. In: Kita, E. (ed.) Evolutionary Algorithms. InTech (2011) ISBN: 978-953-307-171-8, doi:10.5772/16166, http://www.intechopen.com/books/evolutionary-algorithms/analytical-programming-a-novel-approach-for-evolutionary-synthesis-of-symbolic-structures

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Zelinka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Zelinka, I., Chadli, M., Davendra, D., Senkerik, R., Pluhacek, M., Lampinen, J. (2013). Do Evolutionary Algorithms Indeed Require Random Numbers? Extended Study. In: Zelinka, I., Chen, G., Rössler, O., Snasel, V., Abraham, A. (eds) Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems. Advances in Intelligent Systems and Computing, vol 210. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00542-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00542-3_8

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00541-6

  • Online ISBN: 978-3-319-00542-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics