Skip to main content

Instruments and Sensors

  • Chapter
  • First Online:
Physics of Lakes

Abstract

An overview of traditional field measurement tools are presented in this chapter. Instruments and sensors are described, commonly used in field practice to measure water currents, water temperature, electrical conductivity, water level, depth, limnologically relevant optical properties and characteristics of turbulence. Among the current meters, various principles of operation and different primary converters of mechanical, acoustic, electromagnetic instruments are discussed. Physical principles of measurements of water temperature and electrical conductivity are considered, along with the main constructive features of famous historical (Galileo’s thermometer, reversing thermometer) and popular modern (CTDs) instruments. Water level and water depth measurements go back to the nineteenth century, and this chapter presents the tools for that—from point-pole and sounding lead to standard limnigraph and echo-sounder. Tools to quantify optical properties of lake water range from simple but reliable scales to define water colour and water transparency—the hue scale, the Forel-Uhl scale, the Secchi disk—to complicated modern photometers and lasers. Finally, concept of turbulence is introduced in most a simple way, in order to explain the reader how its features are deduced from time series of water velocity or temperature, which are measured by turbulimeters; examples of such instruments are presented.

...The general principle for oceanographic instruments has been to keep them simple and reliable, a principle underlined by the long-successful use of the NANSEN bottle and reversing thermometer... D. James Baker Evolution of physical oceanography 1981.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In oceanography and limnology the common terminology to characterize the water motion is as follows: ‘current’ is used to denote the velocity vector of a water particle. In connection with observations ‘current’ often only characterizes the projection of the water velocity onto the horizontal plane. Generally, the meaning can easily be inferred from the context. ‘Speed’ is used to characterize the modulus of the velocity vector, again either in three dimensions or in the horizontal projection and ‘direction’ almost exclusively means the direction of the projection of the current vector in the horizontal plane.

  2. 2.

    This is a thin layer immediately above the bottom.

  3. 3.

    For instance, for small currents, it often happens with such instruments that the speed is smaller than the corresponding threshold value of the instrument and thus cannot be recorded—whilst the direction is still reliably measured.

  4. 4.

    A primary converter is a physical body (a liquid, crystal, membrane etc.) or simple construction (screw, capacitive cell, etc.) whose characteristics vary significantly in accordance with some external parameter to be measured. The most valuable converters are those which provide information via frequency modulated signals, since they can be immediately transmitted and recorded, without additional transformation.

  5. 5.

    Use of trade names in this book is for identification purposes only and does not constitute endorsement by the authors. This is said here once and for all and will not any further be repeated.

  6. 6.

    The every-day manifestation of the Doppler shift is the sound of a blowing horn from a police car. When a car is approaching the tone arriving at a receiver is higher—i.e., its frequency larger—than when the car is moving away from the receiver. Christian Doppler (1803–53) was an Austrian physicist who described this frequency shift first in 1842.

  7. 7.

    The acronym ADCP stands for ‘Acoustic Doppler Current Profiler’. Sometimes, the acronym ADP (‘Acoustic Doppler Profiler’) is used for such instruments.

  8. 8.

    Electromotive force; or voltage.

  9. 9.

    Defant (1961) [12] gives a description (in German) of reversing thermometers and refers to Schumacher (1923) [62] for detailed use.

  10. 10.

    The accuracy that can be achieved depends also on the response time of the instrument at which a reliable temperature value is reached.

  11. 11.

    10 ppt corresponds to 10 g salt per 1 kg of solution, i.e. 10 g of salt + 990 g of pure water.

  12. 12.

    ‘The seiches are for the first time mentioned in 1730 by Fatio de Duillier, a structural engineer in \({\text {Geneva}}\ldots \) This sort of fourth and back flow is called in Geneva “seiche”.’

  13. 13.

    If such pressure gages are used as substitutes for direct surface elevation gages, they should not be placed in too deep waters, because the frequency spectra of pressure and surface elevations are not the same.

  14. 14.

    These are orders of magnitude; a value \(Re={2000}\) or even larger can well also characterize the transition from laminar to turbulent flow.

  15. 15.

    The turbulent kinetic energy \( \kappa \left[ {\text {m}}^2\,{\text {s}}^{-2}\right] \) and the turbulent dissipation rate\(\varepsilon \ \bigl [{\text {m}}^2\,{\text {s}}^{-3} \bigr ]\) characterize the intensity of the turbulence. Their smallest values characterize the transition of the smallest eddies to dissipation. In limnology and oceanography these smallest values are \(\kappa _\mathrm{min} = 10^{-6} \left[ {\text {m}}^2\,{\text {s}}^{-2}\right] , \varepsilon _\mathrm{min} = 10^{-6}\left[ {\text {m}}^2\,{\text {s}}^{-3}\right] \). They allow construction of the Kolmogorov time \(T_K\) and length \(L_K\)

    $$\begin{aligned} T_K = \frac{\kappa _\mathrm{min}}{\varepsilon _\mathrm{min}} = 1\, sec, \qquad L_K = \sqrt{\frac{\kappa ^2_\mathrm{min}}{\varepsilon ^3_\mathrm{min}}} = 10^{-3} \,\mathrm{m} = 1\, \mathrm{mm}. \end{aligned}$$

    Thus, on time scales of seconds and length scales of millimeters the flows in lakes and the ocean are laminar.

  16. 16.

    A somewhat picturesque description of turbulence is that large gyres generate through their interaction smaller gyres cascading down to the smallest eddies which have the dimension of the Kolmogorov length below which they dissipate into heat. Richardson expressed this poetically as stated in the epigraph to this subsection.

  17. 17.

    This is \(\partial u/\partial z\), where \(u\) is the horizontal velocity and \(z\) the downward coordinate.

Abbreviations

Roman :

Symbols

\({\varvec{B}}\) :

Magnetic field of the Earth

\(f\) :

Symbol for a physical variable

\(\bar{f}\) :

Mean value of \(f\)

\(f^{\prime }\) :

Fluctuation/pulsation of \(f\)

\(F_T\) :

Frequency of eigenoscillation

\(g\) :

Gravity constant

\(H\) :

Depth, water depth

\(H_{sw}(z)\) :

Radiation

\(L\) :

Characteristic length

\(L_K\) :

Kolmogorov length (1 mm)

\(l\) :

Distance between electrodes

\(p\) :

Pressure

\(Re\) :

Reynolds number

\(R_t, (R_0)\) :

Electric resistances of the interior (exterior) of a region

\(T\) :

Temperature

\(T_K\) :

Kolmogorov time (1 s)

\(U\) :

Velocity modulus

\({\varvec{V}}\) :

Velocity vector

\(z_s\) :

Secchi disk depth

Greek :

Symbols

\(\alpha , \beta , \gamma \) :

Coefficients in parameterizations

\(\beta \) :

Isothermal compressibility

\(\varDelta \rho _s\) :

Density anomaly due to dissolved substances

\(\varepsilon \) :

Electric/magnetic potential, light extinction/absorption coefficient, specific turbulent dissipation rate

\(\kappa \) :

Specific turbulent kinetic energy

\(\nu \) :

Kinematic viscosity

\(\rho \) :

Density

\(\rho _{*} = \rho _w\) :

\(=1,000\) kg m\(^{-3}\)

\(\rho _T\) :

Density of pure water

\(\sigma _t = \rho - \rho _{*}\) :

Density anomaly

References

  1. Anisimova, E.P., Speranskaya, A.A.: Turbulence in stratified flows. Proc. of Moscow Univ. Series 3 - Physics, astronomy 18(1), 70–77 (1977) (in Russian)

    Google Scholar 

  2. Arvan, B.M., Kushnikov, V.V., Nabatov, V.N., Paka, V.T.: Free-fall microstructure profiler “BAKLAN”. In: Methods and Technology of Hydrophysical and Geophysical Studies in the World Ocean. P.P. Shirshov Institute of Oceanology, 8–12 (1985) (in Russian)

    Google Scholar 

  3. D’Asaro, E. A. and Lien, R.C.: Lagrangean measurements of waves and turbulence in stratified flows. J. Phys. Oceanogr. 30(3), 641–655 (2000)

    Google Scholar 

  4. D’Asaro, E. A.: Performance of Autonomous Lagrangean Floats. J. of  Atm. and Ocean. Technol. 20, 896–911 (2003)

    Google Scholar 

  5. Baker, D.J.: Ocean Instruments and Experiment Design. In: Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel (eds. B.Warren, C. Wunsch). RES. 12–000 Spring 2007 (Massachusetts Institute of Technology: MIT, OpenCourseWare), http://ocw.mit.edu (Accessed 05. Feb., 2013). Licence: Creative Commons BY-NC-SA396-433

  6. Baretta-Bekker, J.G., Duursma, E.K., Kuipers, B.R.: Encyclopedia of marine sciences, eds. - 2\(^{nd}\), Springer-Verlag, Berlin Heidelberg (1998)

    Google Scholar 

  7. Bertuccioli, L., Roth, G.I., Katz, J., Osborn, T.R.: A submersible particle image velocimetry system for turbulence measurements in the bottom boundary layer. J. Atmos. Ocean. Technol. 16, 1635–1646 (1999)

    Google Scholar 

  8. Cannon, G.A.: Statistical characteristics of velocity fluctuations at intermediate scales in a coastal plain estuary. J. of Phys. Ocean. 1, 5852–5858 (1971)

    Google Scholar 

  9. Carter, G.D., Imberger, J.: Vertically rising microstructure profiler. Journal of Atmospheric and Oceanic Technology 3, 462–471 (1986)

    Google Scholar 

  10. Chen, C.T. and Millero, F.J.: Precise thermodynamic properties for natural waters covering only the limnological range. Limnol. Oceanogr. 31, 657–662 (1986)

    Google Scholar 

  11. Chubarenko, I., Chubarenko, B., Bäuerle, E., Wang, Y., Hutter, K.: Autumn physical limnological experimental campaign in the Island Mainau littoral zone of Lake Constance. J. Limnol. 62(1), 115–119 (2003)

    Google Scholar 

  12. Defant, A.: Physical Oceanography. Pergamon Press, London, Vol. 1, pp. xvi + 729; Vol. 2, pp. viii + 598 (1961)

    Google Scholar 

  13. Dewey, R.K., Crawford, A.E., Gargett, A.E., Oakey, N.S.: A microstructure instrument for profiling oceanic turbulence in coastal bottom boundary layers. Journal of Atmospheric and Oceanic Technology 4, 288–297 (1987)

    Google Scholar 

  14. Dillon, T.M., Powell, T.M.: Low-frequency turbulence spectra in the mixed layer of Lake Tahoe, California-Nevada. J. Geoph. Res. 81(36), 6421–6427 (1976)

    Google Scholar 

  15. Dimaksian, A.M.: Hydrological instruments. Leningrad, Hydrometeoizdat, 284 p. (1972) (in Russian)

    Google Scholar 

  16. Fedorov, K.N., Ginzburg, A.I.: Near-the-surface layer of the ocean. Leningrad, Hydrometeoizdat. 304 p. (1988) (in Russian)

    Google Scholar 

  17. Filatov, N.N.: Dynamics of lakes. Leningrad, Hydrometeoizdat, 166 p. (1983) (in Russian)

    Google Scholar 

  18. Fomin, L.M., Kushnir, V.M., Titov, V.B.: Measurement of oceanic currents. Moscow, Nauka Publishing House, 200 p. (1989) (in Russian)

    Google Scholar 

  19. Forel, F.A.: Le Léman: monographie limnologique. F. Rouge, Librairée de l’Université de Lausanne, Vol. 1, 1892, 539 p.; Vol. 2, 651 p. (1895); Vol. 3, 715 p. (1904)

    Google Scholar 

  20. Gargett, A.E., Osborn, T.R., and Nasmyth, P.W.: Local isotropy and the decay of turbulence in a stratified fluid. J. Fluid Mech. 144, 231–280 (1984)

    Google Scholar 

  21. Gibson, C.H., Nabatov, V.N., Ozmidov R.V.: Measurements of turbulence and fossil turbulence near Ampere seamount. Dyn. Atmos. Oceans 19, 175–204 (1993)

    Google Scholar 

  22. Gibson, C.H., Swartz, W.H.: Detection of conductivity fluctuations in a turbulent flow field. J. Fluid Mech. 16, 357–364 (1963)

    Google Scholar 

  23. Gill, A.E.: Atmosphere-Ocean Dynamics. Academic Press, 662 p. (1982)

    Google Scholar 

  24. Gregg, M.C., Nodland, W.E., Aagaard, E.E., Hirt, D.H.: Use of fiber-optic cable with a free-fall microstructure profiler. OCEANS82 Conference Record, Washington, DC. Mar. Technol. Soc., 260–265 (1982)

    Google Scholar 

  25. Gregg, M.C.: The study of mixing in the ocean: a brief history. Oceanography 4, 39–45 (1991)

    Google Scholar 

  26. Haltrin, V.I., Lee, M.E., Martynov, O.V.: Polar nephelometer for sea truth measurements. Proc. Second International Airborne Remote Sensing Conference and Exhibition: Technology, Measurement and Analysis, Vol. II, San Francisco, California, 24–27 (1996)

    Google Scholar 

  27. Hutter, K., Visher, D.: Lake hydraulics. In: Developments in Hydraulic Engineering, (Ed. P. Novak) Vol. 4, 1–63. New York, Elsevier (1987)

    Google Scholar 

  28. Imberger, J., Head, R.: Measurement of turbulent properties in a natural system. In: Fundamental and Advancements in Hydraulic Measurements and Experimentation. New York, Hydraul. Div. ASCE (1994)

    Google Scholar 

  29. IOC, SCOR and IAPSO: The international thermodynamic equation of seawater - 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides 56, UNESCO, 196 p. (2010)

    Google Scholar 

  30. Jallabert, J.: Seiches ou flux et reflux du lac de Genève. Histoire de l’Acad. Royale des Sciences, pour 1742, Paris, p. 26, 1745

    Google Scholar 

  31. Kenney, B.: Lake surface fluctuations and the mass flow through the narrows of lake Winnipeg. J. Geoph. Res. 84, NC3, 1225–1235 (1979)

    Google Scholar 

  32. Kireev, A.V., Drakov, S.N., Migulia, V.V.: Many-channel nephelometer "Kvant-4" Hydrooptical Investigations. Moscow, P.P.Shirshov Insttute of Oceanology RAS, 79–82 (1985) (in Russian)

    Google Scholar 

  33. Lhermitte, R., Lemmin, U.: Open-channel flow and turbulence measurement by high-resolution Doppler sonar. J. Atmos. Ocean. Technol. 11, 1295–308 (1994)

    Google Scholar 

  34. Lilover, M.J., Lozovatsky, I.D., Gibson, C.H., Nabatov, V.N.: Turbulence exchange through the equatorial undercurrent core of the central Pacific. J. Mar. Syst. 4, 183–195 (1993)

    Google Scholar 

  35. Lohrmann, A., Hackett, B., Roed, L.P.: Heigh-resolution measurement of turbulence, velocity and stress using a pulse-to-pulse coherent sonar. J. Atmos. Ocean. Technol. 7, 19–37 (1990)

    Google Scholar 

  36. Lu, Y., Lueck, R.G.: Using a broadband ADCP in a tidal channel. Part II: turbulence. J. Atmos. Ocean. Technol. 16, 1568–1579 (1999)

    Google Scholar 

  37. Lueck, R.G.: Microstructure measurements in a thermohaline staircase. Deep-Sea Res. 34, 1677–1688 (1987)

    Google Scholar 

  38. Luketina, D.A., Imberger, J.: Determining turbulent kinetic energy dissipation from Batchelor curve fitting. J. Atmos. Ocean. Technol. 18, 100–113 (2001)

    Google Scholar 

  39. Martyn, J.L., McCutcheon, S.C.: Hydrodynamics and transport for water quality modelling. Lewis Publishers, Boca Raton, London, New York, Washington, D.C. (1998)

    Google Scholar 

  40. Monin, A.S., Yaglom, A.M.: Statistical hydromechanics. Moscow, Nauka Publishing House, (1965) (in Russian)

    Google Scholar 

  41. Monin, A.S. (ed.) Oceanology. Physics of the Ocean. V. 1. Hydrophysics of the Ocean. Nauka Publishing House, Moscow, (1978) (in Russian)

    Google Scholar 

  42. Monin, A.S., Ozmidov, R.V.: Turbulence in the Ocean. D. Reidel Publ. Co. (1985)

    Google Scholar 

  43. Moum, J.N., Gregg, M., Licen, C., Carr, M.E.: Comparison of turbulence kinetic energy dissipation rate estimates from two ocean microstructure profiler. J. Atmos. Ocean. Technol. 12, 346–365 (1995)

    Google Scholar 

  44. Müller, B., Märki, M., Dinkel, C., Stierli, R., Wehrli, B.: In-situ measurements in lake sediments using ion-selective electrodes with a profiling lander system. In: Environmental Electrochemistry, ed. M. Taillefert, T.F. Rozan, 126–143. Washington, DC: Am. Geophys. Union (2002)

    Google Scholar 

  45. Nansen, F.: The Norwegian North Polar Expedition, 1893–1896. Scientific Results III. Greenwood Press, reprint 1969, 520 pp. (1902)

    Google Scholar 

  46. Nöschel, A.: Bemerkungen über den Goktscha-see am Kaukasus, in geognostischer, hydrographischer und meteorologischer Beziehung. Verhandlungen der Russ. K. Min. Ges. zu St. Petersburg. (1854)

    Google Scholar 

  47. Oakey, N.S.: Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr. 12, 256–271 (1982)

    Google Scholar 

  48. Oakey, N.S.: EPSONDE: an instrument to measure turbulence in the deep ocean. IEEE Journal of Oceanic Engineering 13, 124–128 (1988)

    Google Scholar 

  49. Osborn, T.R.: The design and performance of free-fall microstructure instruments at the Institute of Oceanography, University of British Columbia. IOUBC Manuscript, Report No. 30 (1978)

    Google Scholar 

  50. Osborn, T.R., Crowford, W.R.: An airfoil probe for measuring velocity fluctuations in the water. Air-Sea Interaction: Instrumants and methods, F.Dobson, L. Hasse, and R.Davis, Eds., Plenum, 369–386 (1980)

    Google Scholar 

  51. Paka, V.T., Fedorov, K.N.: On influence of thermal structure of oceanic upper layer on turbulence development. Proceedings of Academy of Sciences of USSR, Physics of Atmosphere and the Ocean 18(2), 178–184 (1982) (in Russian)

    Google Scholar 

  52. Paka, V.T., Nabatov, V., Lozovatsky, J., Dillon, T.: Oceanic microstructure measurements by BAKLAN and GRIF. J. Atmos. Ocean. Technol. 16, 1519–1532 (1999)

    Google Scholar 

  53. Palmer, M.D.: Some kinetic energy spectra in a near shore region of lake Ontario. J. of Geoph. Res. 1(78), 3585–3597 (1973)

    Google Scholar 

  54. Pokatilova, T.N.: Spectral attenuation of solar radiation in natural waters. In: Hydrology of Baikal and other reservoirs, Ed. - Verbolov, V.I. Novosibirsk, Nauka, 14–19 (1984)

    Google Scholar 

  55. Popov, N.I., Fedorov, K.N., Orlov, V.M.: Marine water. Nauka Publishing House, Moscow, 328 p. (1979)

    Google Scholar 

  56. Prandke, H., Krueger, S., Roeder, W.: Aufbau und Funktion einer frei fallenden Sonde zur Untersuchung der Mikrostruktur der thermohalinen Schichtung im Meer. Acta Hydrophysica 29, 165–210 (1985)

    Google Scholar 

  57. Prandke, H., Stips, A.: Investigation of microstructure and turbulence in marine and limnic waters using the MST profiler. Ispra Joint Research Center, European Commission. Technical Note No. I.96.87 (1996)

    Google Scholar 

  58. Prandtke, H., Stips A.: Test measurements with an operational microstructure-turbulence profiler: detection limit of dissipation rates. Aquat. Sci. 60, 191–209 (1998)

    Google Scholar 

  59. Saggio, A., Imberger, J.: Mixing and turbulent fluxes in the metalimnion of a stratified lake. Limnol. Oceanogr. 46, 392–409 (2001)

    Google Scholar 

  60. Samoliubov B.I.: Bottom stratified currents. Moscow, Nauchny Mir, 464 p. (1999)

    Google Scholar 

  61. Schulthaiss, C.: Wunder anloffen des Wassers. Collectaneen, 6, 80–81. Stadtarchiv Konstaz (1549)

    Google Scholar 

  62. Schumacher, A.: Neue Hilfstafeln für die Umkippthermometer nach Richter und Beitrag zur thermometrischen Tiefenmessung. Annalen der Hydrographie und Maritimen Meteorologie 51, 273–280 (1923)

    Google Scholar 

  63. Simpson, J.H., Crawford, W.R., Rippeth, T.P., Campbell, A.R., Cheok, J.V.S.: Vertical structure of turbulent dissipation in shelf seas. Journal of Physical Oceanography 26, 1580–1590 (1996)

    Google Scholar 

  64. Spence, D.H.N.: Light quality and plant response under water. In Plants and the Daylight Spectrum, H. Smith, ed., Academic, New Yourk, 245–276 (1981)

    Google Scholar 

  65. Stabel, H.-H.: Calcite precipitation in Lake Constance: Chemical equilibrium, sedimentation, and nucleation by algae. Limnol. Oceanogr. 31, 1081–1094 (1986)

    Google Scholar 

  66. Stabrowski, M.: (Extrait). Du phenomene des seiches: observations faites durant un sejour de sept annees du Lac Oniega. Compt. Rend., XLV. Paris (1857)

    Google Scholar 

  67. Stevens, C., Smith, M., Ross, A.: SCAMP: measuring turbulence in estuaries, lakes, and coastal waters.NIWA Water and Atmosphere 7(2), 20–21 (1999)

    Google Scholar 

  68. Steward, R.H.: Introduction to Physical Oceanography. http://oceanworld.tamu.edu/resources/

  69. Stewart, R.W., Grant, H.L.: Determination of the rate of dissipation of turbulent energy near the sea surface in the presence of waves. Journal of Geophysical Research 67, 3177–3180 (1962)

    Google Scholar 

  70. Stommel, H.: Discussion at the Woods Hole Convocation, June 1954. Journal of Marine Research 14, 504–510 (1955)

    Google Scholar 

  71. Swallow, J.C.: A neutral-buoyancy float for measuring deep currents. Deep-Sea Research 3, 74–81 (1955)

    Google Scholar 

  72. Thorpe, S.A.: Turbulence and mixing in a Scottish Loch. Phil. Trans. Royal. Soc. of London 286, A1334, p. 17–181 (1977)

    Google Scholar 

  73. Tilzer, M.M.: The importance of fractional light absorption by photosynthetic pigments for phytoplankton productivity in Lake Constance. Limnol. Oceanogr. 28: 833–846 (1983)

    Google Scholar 

  74. UNESCO: The Practical Salinity Scale 1978 and the International Equation of State of Seawater 1980. Unesco technical papers in marine science 36, 25pp. (1981)

    Google Scholar 

  75. Vasilkov, A.P., Kelbalihanov, B.F., Stefanzev, L.A.: Effect of "cleaning up" of thin oceanic surface layer. Proceedings of Academy of Sciences of USSR, Physics of Atmosphere and the Ocean 21(12), p. 1327–1330 (1985) (in Russian)

    Google Scholar 

  76. Vaucher, J.-P.E.: Mémoire sur les seiches du lac de Genève, composé de 1803 a 1804. Mém. Soc. Phys. VI(35), Genève (1833)

    Google Scholar 

  77. Verduin, J.: Components contributing to light extinction in natural waters: methods of isolation, Archives of Hydrobiology 93, 303–312 (1982)

    Google Scholar 

  78. Wetzel, R.G.:Limnology. Saunders College Publishing, Philadelphia, PA (1975)

    Google Scholar 

  79. Williams, D.T.: Determination of Light Extinction Coefficients in Lakes and Reservoirs. Proc. Symp. on Surface Water Impoundments, H.G. Stefan, Am. Soc. of Civil Eng. (1980)

    Google Scholar 

  80. Wolk, F., Yamazaki, H., Seuront, L., Lueck, R.G.: A new free-fall profiler for measuring bio-physical microstructure. Journal of Atmospheric and Oceanic Technology 19, 780–793 (2002)

    Google Scholar 

  81. Wright, D.G., Pawlowicz, R., McDougall, T. J., Feistel, R., and G. M. Marion: Absolute Salinity, Density Salinity and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10. Ocean Sci. Discuss. 7, 1559–1625 (2010)

    Google Scholar 

  82. Wüest, A., Lorke, A.: Small-scale hydrodynamics in lakes. Annu. Rev. Fluid Mech. 35, 373–412 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolumban Hutter .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hutter, K., Wang, Y., Chubarenko, I.P. (2014). Instruments and Sensors. In: Physics of Lakes. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-00473-0_28

Download citation

Publish with us

Policies and ethics