Skip to main content

Topography, Hydrography, Circulation and Modelling of the Baltic Sea

  • Chapter
Preventive Methods for Coastal Protection

Abstract

The hydrography and dynamics of the Baltic Sea, although ruled by the same principles and forcing factors as any part of the World Ocean, contain several distinguishing features. Apart from the complicated geometry and bathymetry of the basin, two major factors contribute to the complexity of the processes here. The interplay between inflowing saline, dense waters from the North Sea in the bottom layer with the excess of light, and fresh riverine waters coming into the system in the upper layer leads to the formation of a permanent two-layer structure of density separated by a sharp jump layer (halocline). Due to the layered structure, the direct atmospheric forcing is restricted to the upper layer with a typical thickness of 40–80 m, while in the bottom layer advection and mixing processes govern the patterns of the hydrographic fields. On the top of the upper layer, a well-mixed surface layer, with a typical thickness of 15–20 m, is formed due to summer-time heating, whereas at the bottom of this layer a rather sharp jump layer of temperature (thermocline) exists. During autumn the vertical temperature gradient vanishes due to thermal convection and turbulent mixing. There are four mechanisms which induce currents in the Baltic Sea: the wind stress at the sea surface, the surface pressure gradient, the thermohaline horizontal gradient of density and the tidal forces. The currents are steered furthermore by the Coriolis acceleration, topography and friction, forming a general (cyclonic) circulation in this stratified system with positive fresh water budget. Due to the shallowness of the Baltic Sea, bottom friction damps the currents remarkably. Voluminous river runoffs can produce local changes in the sea level height and consequently also in currents. Inflowing waters penetrate at depths where the density of the ambient water matches the inflowing water masses. Due to the small baroclinic Rossby radius (2–10 km), the proper descriptions of mesoscale eddies, fronts and mixing processes need high-resolution modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An often used notion is Baltic Proper to denote the Eastern, Northern and Western Gotland Basin (Table 2.1), Bornholm Basin and Gdańsk Bay.

  2. 2.

    Although the salinity unit ‰ (per mill) is discouraged since 1978, it has been customary in a large part of the oceanographic and popular literature to use this notion. We only use this unit in data and estimates extracted from older sources. The new international standard TEOS-10 uses absolute salinity values in g/kg (Millero et al. 2008).

  3. 3.

    The temperature difference between the surface layer and the lower part of the upper layer (above the halocline) gradually weakens because not all the heat energy is mixed downwards due to convection. A part of the heat energy is released to the atmosphere by turbulent heat fluxes and thus the surface water cools down and its temperature difference in comparison to the waters below the thermocline is reduced.

  4. 4.

    After Joseph Valentin Boussinesq (1842–1929).

  5. 5.

    The term ‘shallow water’ is used here and on some occasions below to distinguish the situation where the typical length of waves of a particular class (Rossby waves, internal waves, surface waves, etc.) considerably exceeds the water depth.

  6. 6.

    In a spin-down or spin-up process, during the relaxation time (also called e-folding time scale) the speed (or any other suitable measure of the process) changes e times compared to its original value.

  7. 7.

    The Ekman spiral was first observed under the ice by Fridtjof Nansen in the 1890s. The spiral was documented much later for the open ocean.

References

  • Alenius P, Leppäranta M (1982) Statistical features of hydrography in the northern Baltic Sea. In: Proceedings of the 13th conference of Baltic oceanographers, Helsinki, August 24–27, 1982, vol 1, pp 95–104

    Google Scholar 

  • Alenius P, Nekrasov A, Myrberg K (2003) The baroclinic Rossby-radius in the Gulf of Finland. Cont Shelf Res 23:563–573

    Article  Google Scholar 

  • Andrejev O, Myrberg K, Alenius P, Lundberg PA (2004) Mean circulation and water exchange in the Gulf of Finland—a study based on three-dimensional modelling. Boreal Environ Res 9:1–16

    Google Scholar 

  • Andrejev O, Sokolov A, Soomere T, Värv R, Viikmäe B (2010) The use of high-resolution bathymetry for circulation modelling in the Gulf of Finland. Est J Eng 16:187–210

    Article  Google Scholar 

  • Andrejev O, Soomere T, Sokolov A, Myrberg K (2011) The role of spatial resolution of a three-dimensional hydrodynamic model for marine transport risk assessment. Oceanologia 53:309–334

    Article  Google Scholar 

  • BACC Author Team (2008) Assessment of climate change for the Baltic Sea basin. Springer, Berlin, 473 pp

    Google Scholar 

  • Beletsky D, Schwab D, McCormick M (2006) Modeling the 1998–2003 summer circulation and thermal structure in Lake Michigan. J Geophys Res Oceans 111:C10010

    Article  Google Scholar 

  • Bergström S, Carlsson B (1994) River runoff to the Baltic Sea: 1950–1990. Ambio 23:280–287

    Google Scholar 

  • Cushman-Roisin BJ, Beckers J-M (2011) Introduction to geophysical fluid dynamics: physical and numerical aspects. Elsevier/Academic Press, Amsterdam/San Diego, 828 pp

    Google Scholar 

  • Dietrich G, Kalle K, Ostapoff F (1963) General oceanography: an introduction. Wiley, New York. German original: Dietrich, G, Kalle K, (1957), Allegemeinde Meereskunde. Gebrüder Bornträger, Berlin, 492 pp

    Google Scholar 

  • Döös K, Meier HEM, Döscher R (2004) The Baltic haline conveyor belt or the overturning circulation and mixing in the Baltic. Ambio 33:261–266

    Google Scholar 

  • Drijfhout SS (1989) Eddy-genesis and the related heat transport: a parameter study. In: Nihoul JCJ, Jamart BM (eds) Mesoscale/synoptic coherent structures in geophysical turbulence. Elsevier oceanography series, vol 50, pp 245–263

    Chapter  Google Scholar 

  • Ekman VW (1905) On the influence of the earth’s rotation on ocean currents. Ark. Mat. Astron. Fys. 2:1–52

    Google Scholar 

  • Ekman M (1996) A consistent map of the postglacial uplift of Fennoscandia. Terra Nova 8:158–165

    Article  Google Scholar 

  • Elken J, Matthäus W (2008) Physical system description. In: The BACC author team, assessment of climate change for the Baltic Sea basin. Springer, Berlin, pp 379–386

    Google Scholar 

  • Elken J, Raudsepp U, Lips U (2003) On the estuarine transport reversal in deep layers of the Gulf of Finland. J Sea Res 49:267–274

    Article  Google Scholar 

  • Feistel G, Nausch G, Wasmund N (2008) State and evolution of the Baltic Sea, 1952–2005. Wiley, Hoboken, 703 pp

    Google Scholar 

  • Fennel W, Seifert T, Kayser B (1991) Rossby radii and phase speeds in the Baltic Sea. Cont Shelf Res 11:23–36

    Article  Google Scholar 

  • Fennel W, Sturm M (1992) Dynamics of the western Baltic. J Mar Syst 3:183–205

    Article  Google Scholar 

  • Fonselius S (1995) Västerhavets och østersjöns oceanografi (Oceanography of the Baltic Sea, Kattegat and the Skagerrak). SMHI, Norrköping, 200 pp

    Google Scholar 

  • Gustafsson T, Kullenberg B (1936) Untersuchungen vor Trägheitströmungen in der Ostsee (Investigations of inertial currents in the Baltic Sea). Sven Hydrogr-Biol Komm Skr, Ny Ser Hydr 13:1–28

    Google Scholar 

  • Heinloo J, Toompuu A (2011) A modified Ekman layer model. Est J Earth Sci 60:123–129

    Article  Google Scholar 

  • Heinloo J, Toompuu A (2012) A modification of the classical Ekman model accounting for the Stokes drifts and stratification effects. Environ Fluid Mech 12:101–113

    Article  Google Scholar 

  • Höglund A, Meier HEM, Broman B, Kriezi E (2009) Validation and correction of regionalised ERA-40 wind fields over the Baltic Sea using the Rossby Centre Atmosphere Model RCA3.0. Rapport Oceanografi No 97, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden, 29 pp

    Google Scholar 

  • Holton JR (1979) An introduction to dynamic meteorology, 2nd edn. Academic Press, New York. 391 pp

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Cambridge University Press, Cambridge, 996 pp

    Google Scholar 

  • Jȩdrasik J, Cieślikiewicz W, Kowalewski M, Bradtke K, Jankowski A (2008) 44 years hindcast of the sea level and circulation in the Baltic Sea. Coast Eng 55:849–860

    Article  Google Scholar 

  • Johansson M, Kahma KK, Boman H, Launiainen J (2004) Scenarios for sea level on the Finnish coast. Boreal Environ Res 9:153–166

    Google Scholar 

  • Keevallik S, Soomere T (2010) Towards quantifying variations in wind parameters across the Gulf of Finland. Est J Earth Sci 59:288–297

    Article  Google Scholar 

  • Kielmann J (1981) Grundlagen und Anwendung eines numerischen Modells der geschichteten Ostsee (Principles and applications of a numerical model for the stratified Baltic Sea). PhD thesis, Berichte aus dem, Institut für Meereskunde der Universität Kiel 87

    Google Scholar 

  • Kuzin VI, Tamsalu R (1974) Vetrovye techeniya v baroklinnom more postoyannoy glubiny (Wind-driven currents in a baroclinic sea of constant depth). In: Chislennye metody rascheta okeanologicheskikh techeniy (Numerical methods for simulation of ocean currents), Novosibirsk, USSR, pp 103–114 (in Russian)

    Google Scholar 

  • Laanemets J, Zhurbas V, Elken J, Vahtera E (2009) Dependence of upwelling-mediated nutrient transport on wind forcing, bottom topography and stratification in the Gulf of Finland: model experiments. Boreal Environ Res 14:213–225

    Google Scholar 

  • Lagemaa P, Elken J, Kõuts T (2011) Operational sea level forecasting in Estonia. Est J Eng 17:301–331

    Article  Google Scholar 

  • Lass H-U, Talpsepp L (1993) Observations of coastal jets in the Southern Baltic. Cont Shelf Res 13:189–203

    Article  Google Scholar 

  • Lehmann A (1995) A three-dimensional baroclinic eddy-resolving model of the Baltic Sea. Tellus A 47:1013–1031

    Article  Google Scholar 

  • Lehmann A, Hinrichsen H-H (2000) On the thermohaline variability of the Baltic Sea. J Mar Syst 25:333–357

    Article  Google Scholar 

  • Lehmann A, Myrberg K (2008) Upwelling in the Baltic Sea—a review. J Mar Syst 74:S3–S12

    Article  Google Scholar 

  • Lehmann A, Krauss W, Hinrichsen H-H (2002) Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea. Tellus A 54:299–316

    Article  Google Scholar 

  • Lehmann A, Getzlaff K, Harlass J (2011) Detailed assessment of climate variability in the Baltic Sea area for the period 1958 to 2009. Clim Res 46:185–196

    Article  Google Scholar 

  • Lehmann A, Myrberg K, Höflich K (2012) A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990–2009. Oceanologia 54:369–393

    Article  Google Scholar 

  • Leppäranta M (1990) Observations of free ice drift and currents in the Bay of Bothnia. Acta regiae societatis scientiarum et litterarum Gothoburgensis. Geophysica 3:84–98

    Google Scholar 

  • Leppäranta M (2010) The drift of sea ice. Springer Praxis, Berlin, 266 pp

    Google Scholar 

  • Leppäranta M, Myrberg K (2009) Physical oceanography of the Baltic Sea. Springer Praxis, Berlin, 378 pp

    Book  Google Scholar 

  • Lindow H (1997) Experimentelle Simulationen windangeregter dynamischer Muster in hochauflösenden numerischen Modellen. Meereswissenschaftliche Berichte, No 22. Institut für Ostseeforschung, Warnemünde (in German)

    Google Scholar 

  • Lu X, Soomere T, Stanev EV, Murawski J (2012) Identification of the environmentally safe fairway in the South-Western Baltic Sea and Kattegat. Ocean Dyn 62:815–829

    Article  Google Scholar 

  • Mälkki P, Tamsalu R (1985) Physical features of the Baltic Sea. Finnish Marine Research, vol 252, 110 pp

    Google Scholar 

  • Meier HEM (2006) Baltic Sea climate in late 21st century: a dynamical downscaling approach using two global models and two emission scenarios. Clim Dyn 27:39–68

    Article  MathSciNet  Google Scholar 

  • Meier HEM (2007) Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuar Coast Shelf Sci 74:610–627

    Article  Google Scholar 

  • Millero FJ, Feistel R, Wright DG, McDougall TJ (2008) The composition of standard seawater and the definition of the reference-composition salinity scale. Deep-Sea Res I 55:50–72

    Article  Google Scholar 

  • Myrberg K, Andrejev O (2003) Main upwelling regions in the Baltic Sea—a statistical analysis based on three-dimensional modelling. Boreal Environ Res 8:97–112

    Google Scholar 

  • Myrberg K, Andrejev O (2006) Modelling of the circulation, water exchange and water age properties of the Gulf of Bothnia. Oceanologia 48(S):55–74

    Google Scholar 

  • Myrberg K, Ryabchenko V, Isaev A, Vankevich R, Andrejev O, Bendtsen J, Erichsen A, Funkquist L, Inkala A, Neelov I, Rasmus K, Rodriguez Medina M, Raudsepp U, Passenko J, Söderkvist J, Sokolov A, Kuosa H, Anderson TR, Lehmann A, Skogen MD (2010) Validation of three-dimensional hydrodynamic models in the Gulf of Finland based on a statistical analysis of a six-model ensemble. Boreal Environ Res 15:453–479

    Google Scholar 

  • Murthy R, Håkansson B, Alenius P (1993) The Gulf of Bothnia year 1991: physical transport experiments. SMHI reports oceanography RO, vol 15. SMHI, Norrköping, 127 pp

    Google Scholar 

  • Nekrasov AV (1999) Sharp contrasts in summer oceanographic conditions observed in Luga-Koporye region in 1997 and 1998. BFU Res Bull 3:28–36

    Google Scholar 

  • Nekrasov AV, Lebedeva IK (2002) Estimation of baroclinic Rossby radii in Luga-Koporye region. BFU Res Bull 4–5:89–93

    Google Scholar 

  • Omstedt A, Elken J, Lehmann A, Piechura J (2004) Knowledge of the Baltic Sea physics gained during the BALTEX and related programmes. Prog Oceanogr 63:1–28

    Article  Google Scholar 

  • Osiński R, Rak D, Walczowski W, Piechura J (2010) Baroclinic Rossby radius of deformation in the southern Baltic Sea. Oceanologia 52:417–429

    Article  Google Scholar 

  • Palmén E (1930) Untersuchungen über die Strömungen in den Finnland umgebenden Meeren. Commentationes physico-mathematicae, vol 12. Societas Scientarium Fennica, Helsinki (in German)

    Google Scholar 

  • Periáñez R (2004) A particle-tracking model for simulating pollutant dispersion in the Strait of Gibraltar. Mar Pollut Bull 49:613–623

    Article  Google Scholar 

  • Raudsepp U (1998) Current dynamics of estuarine circulation in the lateral boundary layer. Estuar Coast Shelf Sci 47:715–730

    Article  Google Scholar 

  • Samuelsson P, Jones CG, Willén U, Ullerstig A, Gollvik S, Hansson U, Jansson C, Kjellström E, Nikulin G, Wyser K (2011) The Rossby centre regional climate model RCA3: model description and performance. Tellus A 63:4–23

    Article  Google Scholar 

  • Sarkisyan AS, Staśkiewicz A, Kowalik Z (1975) Diagnostic calculations of summer circulation in the Baltic Sea. Okeanologiya 15:1002–1009 (in Russian)

    Google Scholar 

  • Seifert T, Tauber F, Kayser B (2001) A high resolution spherical grid topography of the Baltic Sea, 2nd edition. In: Baltic Sea Science Congress, Stockholm, 25–29 November 2001, Poster #147. www.io-warnemuende.de/iowtopo

    Google Scholar 

  • Simons TS (1981) Wind-driven circulations in the southwest Baltic. Tellus 30:272–283

    Google Scholar 

  • Sjöberg B (ed) (1992) Hav och Kust. Sveriges Nationalatlas Förlag. Almquist & Wiksell International, Stockholm

    Google Scholar 

  • Sokolov A, Andrejev O, Wulff F, Rodriguez Medina M (1997) The data assimilation system for data analysis in the Baltic Sea. System ecology contributions, vol 3. Stockholm University, Sweden, 66 pp

    Google Scholar 

  • Soomere T, Delpeche N, Viikmäe B, Quak E, Meier HEM, Döös K (2011) Patterns of current-induced transport in the surface layer of the Gulf of Finland. Boreal Environ Res 16(Suppl A):49–63

    Google Scholar 

  • Stigebrandt A, Lass H-U, Liljebladh B, Alenius P, Piechura J, Hietala R, Beszczynska A (2002) DIAMIX: an experimental study of diapycnal deepwater mixing in the virtually tideless Baltic Sea. Boreal Environ Res 7:363–369

    Google Scholar 

  • Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Verjovkina S, Raudsepp U, Kõuts T, Vahter K (2010) Validation of seatrack web using surface drifters in the Gulf of Finland and Baltic Proper. In: 2010 IEEE/OES US/EU Baltic International Symposium, Riga, Latvia, August 25–27, 2010. IEEE Press, New York, 7 pp

    Google Scholar 

  • Zhurbas VM, Laanemets J, Kuzmina NP, Muraviev SS, Elken J (2008a) Direct estimates of the lateral eddy diffusivity in the Gulf of Finland of the Baltic Sea (based on the results of numerical experiments with an eddy resolving model). Oceanology 48:175–181

    Article  Google Scholar 

  • Zhurbas V, Laanemets J, Vahtera E (2008b) Modeling of the mesoscale structure of coupled upwelling/downwelling events and the related input of nutrients to the upper mixed layer in the Gulf of Finland, Baltic Sea. J Geophys Res—Oceans 113:C05004

    Article  Google Scholar 

  • Witting R (1912) Zusammenfassende Übersicht der Hydrographie des Bottnischen und Finnischen Meerbusens und der nördlichen Ostsee nach den Untersuchungen bis Ende 1910. Finnländische hydrographisch-biologische Untersuchungen, vol 7, 82 pp (in German)

    Google Scholar 

Download references

Acknowledgements

This overview is a contribution to the BalticWay project, supported by the funding from the Finnish Academy (KM), Federal Ministry of Education and Research (BMBF), Germany, and the European Commission’s Seventh Framework Programme (FP7 2007–2013) under grant agreement no. 217246 with the joint Baltic Sea research and development programme BONUS. The authors gratefully acknowledge the contribution of Prof. Matti Leppäranta to the material used here from the book (Leppäranta and Myrberg 2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Myrberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Myrberg, K., Lehmann, A. (2013). Topography, Hydrography, Circulation and Modelling of the Baltic Sea. In: Soomere, T., Quak, E. (eds) Preventive Methods for Coastal Protection. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00440-2_2

Download citation

Publish with us

Policies and ethics