Skip to main content

Simple Quantum Systems

  • Chapter
Computational Physics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 84k Accesses

Abstract

We discuss several approaches to solve the one-dimensional Schrödinger equation numerically. The dispersion of simple finite differences deviates largely from the exact relation unless high order differences are used. More accurate pseudo-spectral methods evaluate the kinetic energy part in Fourier space. The time evolution can be approximated by unitary rational expressions like Cauchy’s form. Multistep differencing schemes have comparable accuracy but are explicit. The split operator approximation of the time evolution operator leads to the real-space product formula. In a computer experiment we simulate a one-dimensional wave packet.

Subsequently we study a two-state system in an oscillating field, a three-state system as a model for superexchange, the Landau-Zener model for curve-crossing and the ladder model for exponential decay. The density matrix formalism is used to describe a dissipative two-state system in analogy to Bloch’s equations for nuclear magnetic resonance. Computer experiments simulate resonance behavior, saturation and power broadening. The generation of a coherent superposition state or a spin flip are simulated and discussed in connection with the manipulation of a qubit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For instance collisions or the electromagnetic radiation field.

  2. 2.

    If, for instance the wavefunction depends on the coordinates of N particles, the scalar product is defined by \(\langle \psi_{n}|\psi_{n'}\rangle = \int d^{3}r_{1}\cdots d^{3}r_{N}\psi_{n}^{*}(r_{1}\cdots r_{N})\psi _{n'}(r_{1}\cdots r_{N})\).

  3. 3.

    They are often called the “coherence” of the two states.

  4. 4.

    The Padé approximation (Sect. 2.4.1) of order [1,1].

  5. 5.

    For simplicity only the case of even M is considered.

  6. 6.

    This basis is usually incomplete.

  7. 7.

    We assume E 2>E 1.

  8. 8.

    So called Rabi oscillations.

  9. 9.

    The matrix of this system corresponds to the Liouville operator.

  10. 10.

    We assume Δ≥0, such that the equilibrium value of z=ρ 11ρ 22 is negative. Eventually, the two states have to be exchanged.

  11. 11.

    For instance T 2=2T 1 for pure radiative damping.

References

  1. I. Allonso-Mallo, N. Reguera, J. Comp. Physiol. 220, 409 (2006)

    ADS  Google Scholar 

  2. Z.A. Anastassi, T.E. Simos, Phys. Rep. 482–483, 1 (2009)

    Article  MathSciNet  Google Scholar 

  3. P.W. Anderson, Phys. Rev. 79, 350 (1950)

    Article  ADS  MATH  Google Scholar 

  4. X. Antoine, A. Arnold, C. Besse, M. Erhardt, A. Schädle, Commun. Comput. Phys. 4, 729 (2008)

    MathSciNet  Google Scholar 

  5. A. Askar, A.S. Cakmak, J. Chem. Phys. 68, 2794 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  6. A.D. Bandrauk, H. Shen, Chem. Phys. Lett. 176, 428 (1991)

    Article  ADS  Google Scholar 

  7. M. Bixon, J. Jortner, J. Chem. Phys. 48, 715 (1986)

    Article  ADS  Google Scholar 

  8. F. Bloch, Nuclear induction. Phys. Rev. 70, 460 (1946)

    Article  ADS  Google Scholar 

  9. P. Bocchieri, A. Loinger, Phys. Rev. 107, 337 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. G. Burkard, R.H. Koch, D.P. DiVincenzo, Phys. Rev. B 69, 64503 (2004)

    Article  ADS  Google Scholar 

  11. A. Castro, M.A.L. Marques, A. Rubio, J. Chem. Phys. 121, 3425 (2004)

    Article  ADS  Google Scholar 

  12. C. Cerjan, K.C. Kulander, Comput. Phys. Commun. 63, 529 (1991)

    Article  ADS  MATH  Google Scholar 

  13. R. Chen, H. Guo, J. Chem. Phys. 111, 9944 (1999)

    Article  ADS  Google Scholar 

  14. L.A. Collins, J.D. Kress, R.B. Walker, Comput. Phys. Commun. 114, 15 (1998)

    Article  ADS  MATH  Google Scholar 

  15. H. De Raedt, Comput. Phys. Rep. 7, 1 (1987)

    Article  ADS  Google Scholar 

  16. H. De Raedt, B. De Raedt, Phys. Rev. A 28, 3575 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  17. L. Diosi, A Short Course in Quantum Information Theory (Springer, Berlin, 2007)

    MATH  Google Scholar 

  18. S.E. Economou, T.L. Reinecke, in Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures, ed. by G. Slavcheva, P. Roussignol (Springer, Berlin, 2010), p. 62

    Google Scholar 

  19. M.D. Feit, J.A. Fleck Jr., A. Steiger, J. Comp. Physiol. 47, 412 (1982)

    MathSciNet  ADS  MATH  Google Scholar 

  20. R.P. Feynman, F.L. Vernon, R.W. Hellwarth, J. Appl. Phys. 28, 49 (1957)

    Article  ADS  Google Scholar 

  21. B. Fornberg, Geophysics 52, 4 (1987)

    Article  Google Scholar 

  22. B. Fornberg, Math. Comput. 51, 699 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Fox, Quantum Optics: An Introduction (Oxford University Press, London, 2006)

    Google Scholar 

  24. A. Goldberg, H.M. Schey, J.L. Schwartz, Am. J. Phys. 35, 177 (1967)

    Article  ADS  Google Scholar 

  25. R. Guantes, S.C. Farantos, J. Chem. Phys. 111, 10827 (1999)

    Article  ADS  Google Scholar 

  26. R. Guantes, A. Nezis, S.C. Farantos, J. Chem. Phys. 111, 10836 (1999)

    Article  ADS  Google Scholar 

  27. J. Halpern, L.E. Orgel, Discuss. Faraday Soc. 29, 32 (1960)

    Article  Google Scholar 

  28. D. Hilbert, L. Nordheim, J. von Neumann, Math. Ann. 98, 1 (1927)

    Article  MATH  Google Scholar 

  29. F.-Y. Hong, S.-J. Xiong, Chin. J. Phys. 46, 379 (2008)

    Google Scholar 

  30. T. Iitaka, Phys. Rev. E 49, 4684 (1994)

    Article  ADS  Google Scholar 

  31. T. Iitaka, N. Carjan, T. Strottman, Comput. Phys. Commun. 90, 251 (1995)

    Article  ADS  MATH  Google Scholar 

  32. S.E. Koonin, C.M. Dawn, Computational Physics (Perseus Books, New York, 1990). ISBN 978-0201127799

    MATH  Google Scholar 

  33. D. Kosloff, R. Kosloff, J. Comp. Physiol. 52, 35 (1983)

    ADS  MATH  Google Scholar 

  34. C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255 (1951)

    Article  MathSciNet  Google Scholar 

  35. L. Landau, Phys. Sov. Union 2, 46–51 (1932)

    Google Scholar 

  36. C. Leforestier, R.H. Bisseling, C. Cerjan, M.D. Feit, R. Friesner, A. Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, R. Kosloff, J. Comp. Physiol. 94, 59 (1991)

    ADS  MATH  Google Scholar 

  37. W. Magnus, Commun. Appl. Math. 7, 649 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  38. E.A. McCullough Jr., R.E. Wyatt, J. Chem. Phys. 51, 1253 (1969)

    Article  ADS  Google Scholar 

  39. E.A. McCullough Jr., R.E. Wyatt, J. Chem. Phys. 54, 3592 (1971)

    Article  ADS  Google Scholar 

  40. S.J. Nettel, A. Kempicki, Am. J. Phys. 47, 987 (1979)

    Article  ADS  Google Scholar 

  41. M. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  42. T.J. Park, J.C. Light, J. Chem. Phys. 85, 5870 (1986)

    Article  ADS  Google Scholar 

  43. D. Pines, C.P. Slichter, Phys. Rev. 100, 1014 (1955)

    Article  ADS  MATH  Google Scholar 

  44. B.I. Schneider, J.-A. Collins, J. Non-Cryst. Solids 351, 1551 (2005)

    Article  ADS  Google Scholar 

  45. E. Schrödinger, Phys. Rev. 28, 1049 (1926)

    Article  ADS  MATH  Google Scholar 

  46. F. Schwabl, Quantum Mechanics, 4th edn. (Springer, Berlin, 2007)

    Google Scholar 

  47. B.I. Stepanov, V.P. Grobkovskii, Theory of Luminescence (Butterworth, London, 1986)

    Google Scholar 

  48. M. Suzuki, Commun. Math. Phys. 51, 183 (1976)

    Article  ADS  MATH  Google Scholar 

  49. H. Tal-Ezer, R. Kosloff, J. Chem. Phys. 81, 3967 (1984)

    Article  ADS  Google Scholar 

  50. W. van Dijk, F.M. Toyama, Phys. Rev. E 75, 036707 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  51. L.M.K. Vandersypen, I.L. Chuang, Rev. Mod. Phys. 76, 1037 (2004)

    Article  ADS  Google Scholar 

  52. R.K. Wangsness, F. Bloch, Phys. Rev. 89, 728 (1953)

    Article  ADS  MATH  Google Scholar 

  53. C.P. Williams, Explorations in Quantum Computing (Springer, Berlin, 2011)

    Book  Google Scholar 

  54. K. Yabana, G.F. Bertsch, Phys. Rev. B 54, 4484 (1996)

    Article  ADS  Google Scholar 

  55. A. Yariv, Quantum Electronics (Wiley, New York, 1975)

    Google Scholar 

  56. C. Zener, Proc. R. Soc. Lond. A 137(6), 696–702 (1932)

    ADS  Google Scholar 

  57. I. Zutic, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scherer, P.O.J. (2013). Simple Quantum Systems. In: Computational Physics. Graduate Texts in Physics. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00401-3_21

Download citation

Publish with us

Policies and ethics