Skip to main content

A Stochastic Lattice-Gas Model for Influenza Spreading

  • Conference paper
Proceedings of the European Conference on Complex Systems 2012

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

  • 657 Accesses

Abstract

We construct a stochastic SIR model for influenza spreading on a D-dimensional lattice, which represents the underlying contact network of individuals. An age distributed population is placed on the lattice and can move on it. The displacement from a site to a nearest neighbor empty site allows individuals to change the number and identities of their contacts. The model is validated against the age-distributed Italian epidemiological data for the influenza A(H1N1) during the 2009/2010 season, with sensible predictions for the epidemiological parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is worth to notice that the probability to move an individual from the site 1 to a randomly chosen nearest neighbor site 2 is given by the probability that 2 is empty times T(1→2), where the first term favours spacing and the second one instead crowding.

  2. 2.

    Our data do not change significantly varying \(\bar{T}_{\rm inf}\) and \(\sigma_{\rm inf}\), provided that \(\bar{T}_{\rm inf}\gg \bar{T}_{s}\). This is consistent with the fact that the number of contagions during the stopping period is negligible with respect to those happening before the stopping (see the high frequency of contagions with generation time ≤0.5 days in Fig. 84.2).

References

  1. Germann TC et al. (2006) Proc Natl Acad Sci USA 103(15):5935

    Article  ADS  Google Scholar 

  2. Ferguson NM et al. (2005) Nature 437:209

    Article  ADS  Google Scholar 

  3. Merler S, Ajelli M (2010) Proc - Royal Soc, Biol Sci 277:557

    Article  Google Scholar 

  4. Ciofi degli Atti ML et al. (2008) PLoS ONE 3:e1790

    Article  ADS  Google Scholar 

  5. Rvachev LA, Longini IM (1985) Math Biosci 75:3

    Article  MathSciNet  MATH  Google Scholar 

  6. Watts D et al. (2005) Proc Natl Acad Sci USA 102:11157–11162

    Article  ADS  Google Scholar 

  7. Hufnagel L et al. (2004) Proc Natl Acad Sci USA 101:15124

    Article  ADS  Google Scholar 

  8. Colizza V et al. (2007) PLoS Med 4:e13

    Article  Google Scholar 

  9. Cooper BS et al. (2006) PLoS Med 3:e12

    Article  Google Scholar 

  10. Epstein JM et al. (2007) PLoS ONE 2:e401

    Article  ADS  Google Scholar 

  11. Colizza V et al. (2006) Proc Natl Acad Sci USA 103:2015–2020

    Article  ADS  Google Scholar 

  12. Fierro A, Liccardo A (2011) Eur Phys J E 34:11

    Article  Google Scholar 

  13. Wallinga J, Lipsitch M (2007) Proc - Royal Soc, Biol Sci 274(1609):599

    Article  Google Scholar 

  14. Del Valle SY et al. (2007) Soc Netw 29:539

    Article  Google Scholar 

  15. Khiabanian H et al. (2009) PLoS ONE 4:8

    Google Scholar 

  16. Miller E et al. (2010) Lancet 375:1100

    Article  Google Scholar 

  17. Yang Y et al. (2009) Science 326:729

    Article  ADS  Google Scholar 

  18. Fraser C et al. (2009) Science 324(5934):1557

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Liccardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Liccardo, A., Fierro, A. (2013). A Stochastic Lattice-Gas Model for Influenza Spreading. In: Gilbert, T., Kirkilionis, M., Nicolis, G. (eds) Proceedings of the European Conference on Complex Systems 2012. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-00395-5_84

Download citation

Publish with us

Policies and ethics