Skip to main content

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Abstract

Although self-organised criticality has been introduced more than two decades ago, its theoretical foundations remain somewhat elusive: How does it work? What is its link to ordinary critical phenomena? How can exponents be calculated systematically? Does it actually exist at all? In the following a field theory is introduced that addresses these questions. In contrast to previous attempts, this field theory is not phenomenological, or based on symmetry arguments. Rather, it is based on the microscopic dynamics of the Manna Model. Exponents can be calculated in an ϵ-expansion perturbatively in a systematic way. Above the upper critical dimension, the field theory becomes (asymptotically) exact, allowing immediate comparison to numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of 1/f noise. Phys Rev Lett 59(4):381–384

    Article  MathSciNet  ADS  Google Scholar 

  2. Jensen HJ (1998) Self-organized criticality. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  3. Pruessner G (2012) Self-organised criticality. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Manna SS (1991) Two-state model of self-organized criticality. J Phys A, Math Gen 24(7):L363–L369

    Article  MathSciNet  ADS  Google Scholar 

  5. Christensen K, Corral Á, Frette V, Feder J, Jøssang T (1996) Tracer dispersion in a self-organized critical system. Phys Rev Lett 77(1):107–110

    Article  ADS  Google Scholar 

  6. Nakanishi H, Sneppen K (1997) Universal versus drive-dependent exponents for sandpile models. Phys Rev E 55(4):4012–4016

    Article  ADS  Google Scholar 

  7. Huynh HN, Pruessner G, Chew LY (2011) The Abelian manna model on various lattices in one and two dimensions. J Stat Mech 2011(09):P09024

    Article  Google Scholar 

  8. Huynh HN, Pruessner G (2012) Universality and a numerical ϵ-expansion of the Abelian manna model below upper critical dimension. Unpubished

    Google Scholar 

  9. Lübeck S (2004) Universal scaling behavior of non-equilibrium phase transitions. Int J Mod Phys B 18(31/32):3977–4118

    Article  ADS  Google Scholar 

  10. Pruessner G, Huynh HN (2012) The manna model on cylinderical, large aspect ratio lattices and above the upper critical dimension. Unpubished

    Google Scholar 

  11. Pruessner G (2003) Oslo rice pile model is a quenched Edwards-Wilkinson equation. Phys Rev E 67(3):030301(R)

    Article  ADS  Google Scholar 

  12. Le Doussal P, Wiese KJ, Chauve P (2002) Two-loop functional renormalization group theory of the depinning transition. Phys Rev B 66(17):174201

    Article  ADS  Google Scholar 

  13. Paczuski M, Maslov S, Bak P (1996) Avalanche dynamics in evolution, growth, and depinning models. Phys Rev E 53(1):414–443

    Article  ADS  Google Scholar 

  14. Paczuski M, Boettcher S (1996) Universality in sandpiles, interface depinning, and earthquake models. Phys Rev Lett 77(1):111–114

    Article  ADS  Google Scholar 

  15. Díaz-Guilera A (1992) Noise and dynamics of self-organized critical phenomena. Phys Rev A 45(2):8551–8558

    Article  ADS  Google Scholar 

  16. Díaz-Guilera A (1994) Dynamic renormalization group approach to self-organized critical phenomena. Europhys Lett 26(3):177–182

    Article  ADS  Google Scholar 

  17. Zhang YC (1989) Scaling theory of self-organized criticality. Phys Rev Lett 63(5):470–473

    Article  ADS  Google Scholar 

  18. Pérez CJ, Corral Á, Díaz-Guilera A, Christensen K, Arenas A (1996) On self-organized criticality and synchronization in lattice models of coupled dynamical systems. Int J Mod Phys B 10(10):1111–1151

    Article  ADS  Google Scholar 

  19. Corral Á, Díaz-Guilera A (1997) Symmetries and fixed point stability of stochastic differential equations modeling self-organized criticality. Phys Rev E 55(3):2434–2445

    Article  ADS  Google Scholar 

  20. Pietronero L, Vespignani A, Zapperi S (1994) Renormalization scheme for self-organized criticality in sandpile models. Phys Rev Lett 72(11):1690–1693

    Article  ADS  Google Scholar 

  21. Chessa A, Vespignani A, Zapperi S (1999) Critical exponents in stochastic sandpile models. In: Proceedings of the Europhysics conference on computational physics CCP 1998, Granada, Spain, September 2–5, 1998. Comp phys commun, vols 121–122, pp 299–302

    Google Scholar 

  22. Marsili M (1994) Renormalization group approach to the self-organization of a simple model of biological evolution. Europhys Lett 28(6):385–390

    Article  ADS  Google Scholar 

  23. Loreto V, Pietronero L, Vespignani A, Zapperi S (1995) Renormalization group approach to the critical behavior of the forest-fire model. Phys Rev Lett 75(3):465–468

    Article  ADS  Google Scholar 

  24. Hasty J, Wiesenfeld K (1997) Renormalization of one-dimensional avalanche models. J Stat Phys 86(5–6):1179–1201

    Article  ADS  MATH  Google Scholar 

  25. Hasty J, Wiesenfeld K (1998) Renormalization group for directed sandpile models. Phys Rev Lett 81(8):1722–1725

    Article  ADS  Google Scholar 

  26. Hwa T, Kardar M (1989) Dissipative transport in open systems: an investigation of self-organized criticality. Phys Rev Lett 62(16):1813–1816

    Article  ADS  Google Scholar 

  27. Grinstein G, Lee DH, Sachdev S (1990) Conservation laws, anisotropy, and “self-organized criticality” in noisy nonequilibrium systems. Phys Rev Lett 64(16):1927–1930

    Article  ADS  Google Scholar 

  28. Dickman R, Vespignani A, Zapperi S (1998) Self-organized criticality as an absorbing state phase transition. Phys Rev E 57(5):5095–5105

    Article  ADS  Google Scholar 

  29. Rossi M, Pastor-Satorras R, Vespignani A (2000) Universality class of absorbing phase transitions with a conserved field. Phys Rev Lett 85(9):1803–1806

    Article  ADS  Google Scholar 

  30. van Wijland F (2002) Universality class of nonequilibrium phase transitions with infinitely many absorbing states. Phys Rev Lett 89(19):190602

    Article  Google Scholar 

  31. Bonachela JA, Chaté H, Dornic I, Muñoz MA (2007) Absorbing states and elastic interfaces in random media: two equivalent descriptions of self-organized criticality. Phys Rev Lett 98(15):155702

    Article  ADS  Google Scholar 

  32. Bonachela JA, Muñoz MA (2007) How to discriminate easily between directed-percolation and manna scaling. Physica A 384(1):89–93. Proceedings of the international conference on statistical physics, Raichak and Kolkata, India, January 5–9, 2007

    Article  ADS  Google Scholar 

  33. Basu M, Basu U, Bondyopadhyay S, Mohanty PK, Hinrichsen H (2012) Fixed-energy sandpiles belong generically to directed percolation. Phys Rev Lett 109:015702

    Article  ADS  Google Scholar 

  34. Vespignani A, Dickman R, Muñoz MA, Zapperi S (1998) Driving, conservation and absorbing states in sandpiles. Phys Rev Lett 81(25):5676–5679

    Article  ADS  Google Scholar 

  35. Tang C, Bak P (1988) Critical exponents and scaling relations for self-organized critical phenomena. Phys Rev Lett 60(23):2347–2350

    Article  ADS  Google Scholar 

  36. Pruessner G, Peters O (2006) Self-organized criticality and absorbing states: lessons from the Ising model. Phys Rev E 73(2):025106(R)

    Article  ADS  Google Scholar 

  37. Peters O, Pruessner G (2009) Tuning- and order parameter in the soc ensemble. Unpubished

    Google Scholar 

  38. Dhar D (1999) Studying self-organized criticality with exactly solved models. arXiv:cond-mat/9909009

  39. Diehl HW, Schmidt FM (2011) The critical Casimir effect in films for generic non-symmetry-breaking boundary conditions. New J Phys 13(12):123025

    Article  Google Scholar 

  40. Pruessner G (2012) The average avalanche size in the manna model and other models of self-organised criticality. Preprint. Available from: arXiv:1208.2069

  41. Mathematica (2011) Wolfram Research, Inc, Champaign, IL, USA, version 8.0.1.0

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar Pruessner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Pruessner, G. (2013). A Field Theory for Self-organised Criticality. In: Gilbert, T., Kirkilionis, M., Nicolis, G. (eds) Proceedings of the European Conference on Complex Systems 2012. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-00395-5_13

Download citation

Publish with us

Policies and ethics