Skip to main content

Effective Macroscopic Stokes-Cahn-Hilliard Equations for Periodic Immiscible Flows in Porous Media

  • Conference paper
Proceedings of the European Conference on Complex Systems 2012

Abstract

Using thermodynamic and variational principles we study a basic phase field model for the mixture of two incompressible fluids in strongly perforated domains. We rigorously derive an effective macroscopic phase field equation under the assumption of periodic flow and a sufficiently large Péclet number with the help of the multiple scale method with drift and our recently introduced splitting strategy for Ginzburg-Landau/Cahn-Hilliard-type equations (Schmuck et al., Proc. R. Soc. A, 468:3705–3724, 2012). As for the classical convection-diffusion problem, we obtain systematically diffusion-dispersion relations (including Taylor-Aris-dispersion). In view of the well-known versatility of phase field models, our study proposes a promising model for many engineering and scientific applications such as multiphase flows in porous media, microfluidics, and fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schmuck M, Pradas M, Pavliotis GA, Kalliadasis S (2012) Upscaled phase-field models for interfacial dynamics in strongly heterogeneous domains. Proc R Soc A 468:3705–3724

    Article  MathSciNet  ADS  Google Scholar 

  2. de Gennes PG, Prost RL (1993) The physics of liquid crystals. Oxford University Press, London

    Google Scholar 

  3. Doi M (1986) The theory of polymer dynamics. Oxford Science Publication, London

    Google Scholar 

  4. Lin FH, Liu C (1995) Nonparabolic dissipative systems, modeling the flow of liquid crystals. Commun Pure Appl Math XLVIII:501–537

    Article  Google Scholar 

  5. Liu C, Shen J (2003) A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179:211–228

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Lowengrub J, Truskinovsky L (1998) Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proc R Soc A 454:2617–2654

    Article  MathSciNet  MATH  Google Scholar 

  7. Struwe M (2008) Variational methods: applications to nonlinear partial differential equations and Hamiltonian systems. Springer, Dordrecht

    Google Scholar 

  8. Liu C, Walkington NJ (2001) An Eulerian description of fluids containing visco-hyperelastic particles. Arch Ration Mech Anal 159:229–252

    Article  MathSciNet  MATH  Google Scholar 

  9. Abels H (2011) Double obstacle limit for a Navier-Stokes/Cahn-Hilliard system. In: Progress in nonlinear differential equations and their applications, vol 43. Springer, Berlin, pp 1–20

    Google Scholar 

  10. Carbonell R, Whitaker S (1983) Dispersion in pulsed systems—II: Theoretical developments for passive dispersion in porous media. Chem Eng Sci 38(11):1795–1802

    Article  Google Scholar 

  11. Hornung U (1997) Homogenization and porous media. Springer, Berlin

    Book  MATH  Google Scholar 

  12. Mei CC (1992) Method of homogenization applied to dispersion in porous media. Transp Porous Media 9:261–274. doi:10.1007/BF00611970

    Article  Google Scholar 

  13. Rubinstein J, Mauri R (1986) Dispersion and convection in periodic porous media. SIAM J Appl Math 46(6):1018–1023

    Article  MathSciNet  MATH  Google Scholar 

  14. Aris R (1956) On the dispersion of a solute in a fluid flowing through a tube. Proc R Soc A 235(1200):67–77

    Article  ADS  Google Scholar 

  15. Brenner H (1980) Dispersion resulting from flow through spatially periodic porous media. Philos Trans R Soc Lond A 297(1430):81–133

    Article  ADS  MATH  Google Scholar 

  16. Taylor G (1953) Dispersion of soluble matter in solvent flowing slowly through a tube. Proc R Soc A 219(1137):186–203

    Article  ADS  Google Scholar 

  17. Schmuck M, Berg P (2013) Homogenization of a catalyst layer model for periodically distributed pore geometries in PEM fuel cells. Appl Math Res Express. doi:10.1093/amrx/abs011

    MATH  Google Scholar 

  18. Allaire G, Brizzi R, Mikelić A, Piatnitski A (2010) Two-scale expansion with drift approach to the Taylor dispersion for reactive transport through porous media. Chem Eng Sci 65:2292–2300

    Article  Google Scholar 

  19. Marušic-Paloka E, Piatnitski AL (2005) Homogenization of a nonlinear convection-diffusion equation with rapidly oscillating coefficients and strong convection. J Lond Math Soc 72(02):391

    Article  MATH  Google Scholar 

  20. Schmuck M (2012) A new upscaled Poisson-Nernst-Planck system for strongly oscillating potentials. Preprint. arXiv:1209.6618v1

  21. Schmuck M (2012) First error bounds for the porous media approximation of the Poisson-Nernst-Planck equations. Z Angew Math Mech 92(4):304–319

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from EPSRC Grant No. EP/H034587, EU-FP7 ITN Multiflow and ERC Advanced Grant No. 247031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Schmuck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Schmuck, M., Pavliotis, G.A., Kalliadasis, S. (2013). Effective Macroscopic Stokes-Cahn-Hilliard Equations for Periodic Immiscible Flows in Porous Media. In: Gilbert, T., Kirkilionis, M., Nicolis, G. (eds) Proceedings of the European Conference on Complex Systems 2012. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-00395-5_121

Download citation

Publish with us

Policies and ethics