Skip to main content

Generating the Mass of Particles from Extended Theories of Gravity

  • Conference paper
  • First Online:
Frontiers of Fundamental Physics and Physics Education Research

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 145))

  • 1685 Accesses

Abstract

A geometrical approach to produce the mass of particles is derived. The results could be suitably tested at LHC. Starting from a 5D unification scheme, we show that all the known interactions could be induced by a symmetry breaking of the non-unitary \(GL(4)\)-group of diffeomorphisms. The further gravitational degrees of freedom, emerging from the reduction mechanism in 4D, eliminate the hierarchy problem generating a cut-off comparable with electroweak scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Basini G, Capozziello S (2003) Gen Rel Grav 35:2217

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Capozziello S, Cianci R, Stornaiolo C, Vignolo S (2008) Int J Geom Meth Mod Phys 5:765

    Article  MathSciNet  Google Scholar 

  3. Capozziello S, Basini G, De Laurentis Eur M (2011) Phys J C 71:1679

    ADS  Google Scholar 

  4. Capozziello S, Matsumoto J, Nojiri S, Odintsov SD (2010) Phys Lett B 693:198

    Article  ADS  Google Scholar 

  5. Birrell N, Davies PC (1984) Quantum fields in curved space. Cambridge University, Cambridge

    MATH  Google Scholar 

  6. Pich A (2007) arXiv: 0705.4264[hep-ph] (2007)

    Google Scholar 

  7. Antoniadis I, Dimopoulos S, Giveon A (2001) JHEP 0105:055

    Article  ADS  MathSciNet  Google Scholar 

  8. Calmet X, Hsu SDH, Reeb Phys D (2008) Rev D 77:125015

    Article  Google Scholar 

  9. Capozziello S, De Laurentis M (2011) Phys Rept 509:167

    Google Scholar 

  10. Calmet X, Hsu SDH (2008) Phys Lett B 663:95

    Article  ADS  Google Scholar 

  11. Meade P, Randall L (2008) J High Energy Phys 0805:003

    Article  ADS  MathSciNet  Google Scholar 

  12. Anchordoqui LA, Feng JL, Goldberg H, Shapere AD (2002) Phys Rev D 65:124027

    Article  ADS  Google Scholar 

  13. Hehl FW et al (1970) J Math Phys 12:1334

    Article  ADS  MathSciNet  Google Scholar 

  14. Coleman S, Wess J, Zumino B (1969) Phys Rev 117:2239

    Article  ADS  Google Scholar 

  15. Basini G, Capozziello S, Longo G (2003) Phys Lett A 311:465

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Llewellyn Smith CH (1973) Phys Lett B 46:233

    Article  ADS  Google Scholar 

  17. Dvali G, Giudice GF, Gomez C, Kehagias A (2010) CERN-PH-TH-226

    Google Scholar 

  18. Cappiello L, D’Ambrosio G (2010) Eur Phys J C 69:315

    Article  ADS  Google Scholar 

  19. ’t Hooft G Topological aspects of quantum chromodynamics, Lectures given at International School of Nuclear Physics: 20th Course: Heavy Ion Collisions from Nuclear to Quark Matter (Erice 98), Erice, Italy, 17–25 Sep 1998, Topological aspects of quantum chromodynamics, hep-th/9812204, published in Erice 1998, From the Planck length to the Hubble radius, pp.216–236

    Google Scholar 

  20. Hewett J, Rizzo T (2007) JHEP 0712:009

    Article  ADS  Google Scholar 

  21. Arason H, Castano DJ, Keszthelyi B, Mikaelian S, Piard EJ, Ramond P, Wright BD (1992) Phys Rev D 46:3945

    Article  ADS  Google Scholar 

  22. Fabbrichesi M, Percacci R, Tonero A, Zanusso O (2011) Phys Rev D83:025016

    Article  ADS  Google Scholar 

  23. Appelquist T, Chanowitz MS (1987) Phys Rev Lett 59, 2405 [Erratum-ibid. 60, 1589 (1988)]

    Google Scholar 

  24. Weinberg S, in Understanding the Fundamental Constituents of Matter, ed. A. Zichichi (Plenum Press, New York, 1977); in General Relativity, ed. S. W. Hawking and W. Israel (Cambridge University Press, 1979): 700

    Google Scholar 

  25. Aad G et al (2011) The ATLAS collaboration. Eur Phys J C 71:1512

    ADS  Google Scholar 

  26. Capozziello S, Lambiase G, Stornaiolo C (2001) Ann Phys 10:713

    Article  MATH  MathSciNet  Google Scholar 

  27. Belyaev AS, Shapiro IL, do Vale MBA(2007) Phys Rev D 75: 034014

    Google Scholar 

  28. Aaltonen T et al. (2011) arXiv: 1104.0699 [hep- ex]

    Google Scholar 

  29. Bogdanos C, Capozziello S, De Laurentis M, Nesseris S (2010) Astropart Phys 34:236–244

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Capozziello, S., De Laurentis, M. (2014). Generating the Mass of Particles from Extended Theories of Gravity. In: Sidharth, B., Michelini, M., Santi, L. (eds) Frontiers of Fundamental Physics and Physics Education Research. Springer Proceedings in Physics, vol 145. Springer, Cham. https://doi.org/10.1007/978-3-319-00297-2_2

Download citation

Publish with us

Policies and ethics