Skip to main content

White OLED Materials

  • Living reference work entry
  • First Online:
Handbook of Advanced Lighting Technology
  • 548 Accesses

Abstract

Since the 1970s, the successful synthesis and controlled doping of conjugated polymers established the important class of organic semiconductors, which was honored with the Nobel Prize in Chemistry in the year 2000 (Chiang et al. 1977). The main impetus came from the demonstration of high-performance organic light-emitting diodes (OLEDs) incorporating an organic heterojunction of p- and n-conducting organic semiconductors from vacuum-evaporated molecular films (Tang and Vanslyke 1987) and from conjugated polymers (Burroughes et al. 1990), as well as the first successful fabrication of efficient photovoltaic cells and thin-film transistors from conjugated polymers and oligomers (Tang 1986; Koezuka et al. 1987; Burroughes et al. 1988; Horowitz et al. 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adachi C, Baldo MA, Forrest SR, Lamansky S, Thompson ME, Kwong RC (2001) High-efficiency red electrophosphorescence devices. Appl Phys Lett 78:1622–1624

    Article  Google Scholar 

  • Baldo MA, O'Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154

    Article  Google Scholar 

  • Baldo MA, O'Brien DF, Thompson ME, Forrest SR (1999a) Excitonic singlet-triplet ratio in a semiconducting organic thin film. Phys Rev B 60:14422–14428

    Article  Google Scholar 

  • Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR (1999b) Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl Phys Lett 75:4–6

    Article  Google Scholar 

  • Barbieri A, Accorsi G, Armaroli N (2008) Luminescent complexes beyond the platinum group: the d(10) avenue. Chem Commun 19:2185–2193

    Article  Google Scholar 

  • Berggren M, Inganas O, Gustafsson G, Rasmusson J, Andersson MR, Hjertberg T, Wennerstrom O (1994) Light-emitting-diodes with variable colors from polymer blends. Nature 372:444–446

    Article  Google Scholar 

  • Brooks J, Babayan Y, Lamansky S, Djurovich PI, Tsyba I, Bau R, Thompson ME (2002) Synthesis and characterization of phosphorescent cyclometalated platinum complexes. Inorg Chem 41:3055–3066

    Article  Google Scholar 

  • Burroughes JH, Jones CA, Friend RH (1988) New semiconductor-device physics in polymer diodes and transistors. Nature 335:137–141

    Article  Google Scholar 

  • Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Light-emitting-diodes based on conjugated polymers. Nature 347:539–541

    Article  Google Scholar 

  • Capecchi S, Renault O, Moon DG, Halim M, Etchells M, Dobson PJ, Salata OV, Chrisou V (2000) High-efficiency organic electroluminescent devices using an organoterbium emitter. Adv Mater 12:1591–1594

    Article  Google Scholar 

  • Chang CF, Cheng YM, Chi Y, Chiu YC, Lin CC, Lee GH, Chou PT, Chen CC, Chang CH, Wu CC (2008) Highly efficient blue-emitting iridium(III) carbene complexes and phosphorescent OLEDs. Angew Chem Int Ed 47:4542–4545

    Article  Google Scholar 

  • Chen CH, Shi J, Klubek KP (1999) US Patent 5, 908,581

    Google Scholar 

  • Chen CH, Tang CW, Shi J, Klubek KP (2000a) US Patent 6, 020,078

    Google Scholar 

  • Chen CH, Tang CW, Shi J, Klubek KP (2000b) Recent developments in the synthesis of red dopants for Alq(3) hosted electroluminescence. Thin Solid Films 363:327–331

    Article  Google Scholar 

  • Chen BJ, Lin XQ, Cheng LF, Lee CS, Gambling WA, Lee ST (2001) Improvement of efficiency and colour purity of red-dopant organic light-emitting diodes by energy levels matching with the host materials. J Phys D Appl Phys 34:30–35

    Article  Google Scholar 

  • Chiang CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, Macdiarmid AG (1977) Electrical-conductivity in doped polyacetylene. Phys Rev Lett 39:1098–1101

    Article  Google Scholar 

  • Chiu YC, Hung JY, Chi Y, Chen CC, Chang CH, Wu CC, Cheng YM, Yu YC, Lee GH, Chou PT (2009) En route to high external quantum efficiency (similar to 12 %), organic true-blue-light-emitting diodes employing novel design of iridium (III) phosphors. Adv Mater 21:2221–2225

    Article  Google Scholar 

  • Chuang CY, Shih PI, Chien CH, Wu FI, Shu CF (2007) Bright-white light-emitting devices based on a single polymer exhibiting simultaneous blue, green, and red emissions. Macromolecules 40:247–252

    Article  Google Scholar 

  • Czerwieniec R, Yu JB, Yersin H (2011) Blue-light emission of Cu(I) complexes and singlet harvesting. Inorg Chem 50:8293–8301

    Article  Google Scholar 

  • D’Andrade BW, Forrest SR (2003) Effects of exciton and charge confinement on the performance of white organic p-i-n electrophosphorescent emissive excimer devices. J Appl Phys 94:3101–3109

    Article  Google Scholar 

  • D’Andrade BW, Brooks J, Adamovich V, Thompson ME, Forrest SR (2002) White light emission using triplet excimers in electrophosphorescent organic light-emitting devices. Adv Mater 14:1032–1036

    Article  Google Scholar 

  • Deaton JC, Switalski SC, Kondakov DY, Young RH, Pawlik TD, Giesen DJ, Harkins SB, Miller AJM, Mickenberg SF, Peters JC (2010) E-type delayed fluorescence of a phosphine-supported Cu-2(mu-NAr2)(2) diamond core: harvesting singlet and triplet excitons in OLEDs. J Am Chem Soc 132:9499–9508

    Article  Google Scholar 

  • Di Censo D, Fantacci S, De Angelis F, Klein C, Evans N, Kalyanasundaram K, Bolink HJ, Gratzel M, Nazeeruddin MK (2008) Synthesis, characterization, and DFT/TD-DFT calculations of highly phosphorescent blue light-emitting anionic iridium complexes. Inorg Chem 47:980–989

    Article  Google Scholar 

  • Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y, Adachi C (2009) Thermally activated delayed fluorescence from Sn4+ -porphyrin complexes and their application to organic light-emitting diodes – a novel mechanism for electroluminescence. Adv Mater 21:4802–4806

    Article  Google Scholar 

  • Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911–918

    Article  Google Scholar 

  • Fox JL, Chen CH (1988) US Patent 4, 736,032

    Google Scholar 

  • Gao ZQ, Mi BX, Tam HL, Cheah KW, Chen CH, Wong MS, Lee ST, Lee CS (2008) High efficiency and small roll-off electrophosphorescence from a new iridium complex with well-matched energy levels. Adv Mater 20:774–778

    Article  Google Scholar 

  • Gather MC, Alle R, Becker H, Meerholz K (2007) On the origin of the color shift in white-emitting OLEDs. Adv Mater 19:4460–4465

    Article  Google Scholar 

  • Gather MC, Kohnen A, Meerholz K (2011) White organic light-emitting diodes. Adv Mater 23:233–248

    Article  Google Scholar 

  • Han LL, Yang DF, Li WL, Chu B, Chen Y, Su ZS, Zhang DY, Yan F, Hu ZZ, Zhang ZQ (2008) The reduced triplet-triplet annihilation of electrophosphorescent device doped by an iridium complex with active hydrogen. Appl Phys Lett 93:153303

    Article  Google Scholar 

  • Holmes RJ, Forrest SR, Tung YJ, Kwong RC, Brown JJ, Garon S, Thompson ME (2003) Blue organic electrophosphorescence using exothermic host-guest energy transfer. Appl Phys Lett 82:2422–2424

    Article  Google Scholar 

  • Holmes RJ, Forrest SR, Sajoto T, Tamayo A, Djurovich PI, Thompson ME, Brooks J, Tung YJ, D'Andrade BW, Weaver MS, Kwong RC, Brown JJ (2005) Saturated deep blue organic electrophosphorescence using a fluorine-free emitter. Appl Phys Lett 87:243507

    Article  Google Scholar 

  • Horowitz G, Fichou D, Peng XZ, Xu ZG, Garnier F (1989) A field-effect transistor based on conjugated alpha-sexithienyl. Solid State Commun 72:381–384

    Article  Google Scholar 

  • Hosokawa C, Higashi H, Nakamura H, Kusumoto T (1995) Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant. Appl Phys Lett 67:3853–3855

    Article  Google Scholar 

  • Huang L, Wang KZ, Huang CH, Li FY, Huang YY (2001) Bright red electroluminescent devices using novel second-ligand-contained europium complexes as emitting layers. J Mater Chem 11:790–793

    Article  Google Scholar 

  • Hudson ZM, Sun C, Helander MG, Chang YL, Lu ZH, Wang SN (2012) Highly efficient blue phosphorescence from triarylboron-functionalized platinum(II) complexes of N-heterocyclic carbenes. J Am Chem Soc 134:13930–13933

    Article  Google Scholar 

  • Hung LS, Chen CH (2002) Recent progress of molecular organic electroluminescent materials and devices. Mater Sci Eng R 39:143–222

    Article  Google Scholar 

  • Jiang JX, Xu YH, Yang W, Guan R, Liu ZQ, Zhen HY, Cao Y (2006) High-efficiency white-light-emitting devices from a single polymer by mixing singlet and triplet emission. Adv Mater 18:1769–1773

    Article  Google Scholar 

  • Jung SG, Kang YJ, Kim HS, Kim YH, Lee CL, Kim JJ, Lee SK, Kwon SK (2004) Effect of substitution of methyl groups on the luminescence performance of Ir-III complexes: preparation, structures, electrochemistry, photophysical properties and their applications in organic light-emitting diodes (OLEDs). Eur J Inorg Chem 2004:3415–3423

    Article  Google Scholar 

  • Jung SO, Zhao Q, Park JW, Kim SO, Kim YH, Oh HY, Kim J, Kwon SK, Kang Y (2009) A green emitting iridium(III) complex with narrow emission band and its application to phosphorescence organic light-emitting diodes (OLEDs). Org Electron 10:1066–1073

    Article  Google Scholar 

  • Kang DM, Kang JW, Park JW, Jung SO, Lee SH, Park HD, Kim YH, Shin SC, Kim JJ, Kwon SK (2008) Iridium complexes with cyclometalated 2-cycloalkenylpyridine ligands as highly efficient emitters for organic light-emitting diodes. Adv Mater 20:2003–2007

    Article  Google Scholar 

  • Kawamura Y, Goushi K, Brooks J, Brown JJ, Sasabe H, Adachi C (2005) 100 % phosphorescence quantum efficiency of Ir(III) complexes in organic semiconductor films. Appl Phys Lett 86:071104

    Article  Google Scholar 

  • Kawamura Y, Brooks J, Brown JJ, Sasabe H, Adachi C (2006) Intermolecular interaction and a concentration-quenching mechanism of phosphorescent Ir(III) complexes in a solid film. Phys Rev Lett 96:017404

    Article  Google Scholar 

  • Kido J, Hongawa K, Okuyama K, Nagai K (1994) White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with 3 fluorescent dyes. Appl Phys Lett 64:815–817

    Article  Google Scholar 

  • Koezuka H, Tsumura A, Ando T (1987) Field-effect transistor with polythiophene thin-film. Synth Met 18:699–704

    Article  Google Scholar 

  • Kwong RC, Sibley S, Dubovoy T, Baldo M, Forrest SR, Thompson ME (1999) Efficient, saturated red organic light emitting devices based on phosphorescent platinum(II) porphyrins. Chem Mater 11:3709–3713

    Article  Google Scholar 

  • Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Lee HE, Adachi C, Burrows PE, Forrest SR, Thompson ME (2001) Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes. J Am Chem Soc 123:4304–4312

    Article  Google Scholar 

  • Lee SK, Hwang DH, Jung BJ, Cho NS, Lee J, Lee JD, Shim HK (2005) The fabrication and characterization of single-component polymeric white-light-emitting diodes. Adv Funct Mater 15:1647–1655

    Article  Google Scholar 

  • Lee SJ, Park KM, Yang K, Kang Y (2009) Blue phosphorescent Ir(III) complex with high color purity: fac-tris(2′,6′-difluoro-2,3′-bipyridinato-N, C-4′)iridium(III). Inorg Chem 48:1030–1037

    Article  Google Scholar 

  • Lee SY, Yasuda T, Nomura H, Adachi C (2012) High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor-acceptor hybrid molecules. Appl Phys Lett 101:093306

    Article  Google Scholar 

  • Lee J, Shizu K, Tanaka H, Nomura H, Yasuda T, Adachi C (2013) Oxadiazole- and triazole-based highly-efficient thermally activated delayed fluorescence emitters for organic light-emitting diodes. J Mater Chem C 1:4599–4604

    Article  Google Scholar 

  • Li J, Nakagawa T, MacDonald J, Zhang QS, Nomura H, Miyazaki H, Adachi C (2013) Highly efficient organic light-emitting diode based on a hidden thermally activated delayed fluorescence channel in a heptazine derivative. Adv Mater 25:3319–3323

    Article  Google Scholar 

  • Liu J, Zhou QG, Cheng YX, Geng YH, Wang LX, Ma DG, Jing XB, Wang FS (2005) The first single polymer with simultaneous blue, green, and red emission for white electroluminescence. Adv Mater 17:2974–2978

    Article  Google Scholar 

  • Liu J, Guo X, Bu LJ, Xie ZY, Cheng YX, Geng YH, Wang LX, Jing XB, Wang FS (2007a) White electroluminescence from a single-polymer system with simultaneous two-color emission: polyfluorene as blue host and 2,1,3-benzothiadiazole derivatives as orange dopants on the side chain. Adv Funct Mater 17:1917–1925

    Article  Google Scholar 

  • Liu J, Xie ZY, Cheng YX, Geng YH, Wang LX, Jing XB, Wang FS (2007b) Molecular design on highly efficient white electroluminescence from a single-polymer system with simultaneous blue, green, and red emission. Adv Mater 19:531–535

    Article  Google Scholar 

  • Liu ZW, Bian ZQ, Ming L, Ding F, Shen HY, Nie DB, Huang CH (2008) Green and blue-green phosphorescent heteroleptic iridium complexes containing carbazole-functionalized beta-diketonate for non-doped organic light-emitting diodes. Org Electron 9:171–182

    Article  Google Scholar 

  • Liu ZW, Qayyum MF, Wu C, Whited MT, Djurovich PI, Hodgson KO, Hedman B, Solomon EI, Thompson ME (2011) A codeposition route to CuI-pyridine coordination complexes for organic light-emitting diodes. J Am Chem Soc 133:3700–3703

    Article  Google Scholar 

  • Lo SC, Shipley CP, Bera RN, Harding RE, Cowley AR, Burn PL, Samuel IDW (2006) Blue phosphorescence from iridium(III) complexes at room temperature. Chem Mater 18:5119–5129

    Article  Google Scholar 

  • Lo SC, Harding RE, Shipley CP, Stevenson SG, Burn PL, Samuel IDW (2009) High-triplet-energy dendrons: enhancing the luminescence of deep blue phosphorescent iridium(III) complexes. J Am Chem Soc 131:16681–16688

    Article  Google Scholar 

  • Luo J, Li XZ, Hou Q, Peng JB, Yang W, Cao Y (2007) High-efficiency white-light emission from a single copolymer: fluorescent blue, green, and red chromophores on a conjugated polymer backbone. Adv Mater 19:1113–1117

    Article  Google Scholar 

  • Ma YG, Zhang HY, Shen JC, Che CM (1998) Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes. Synth Met 94:245–248

    Article  Google Scholar 

  • Manbeck GF, Brennessel WW, Eisenberg R (2011) Photoluminescent copper(I) complexes with amido-triazolato ligands. Inorg Chem 50:3431–3441

    Article  Google Scholar 

  • Mehes G, Nomura H, Zhang QS, Nakagawa T, Adachi C (2012) Enhanced electroluminescence efficiency in a spiro-acridine derivative through thermally activated delayed fluorescence. Angew Chem Int Ed 51:11311–11315

    Article  Google Scholar 

  • Misra A, Kumar P, Kamalasanan MN, Chandra S (2006) White organic LEDs and their recent advancements. Semicond Sci Technol 21:R35–R47

    Article  Google Scholar 

  • Nakagawa T, Ku SY, Wong KT, Adachi C (2012) Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor-acceptor structure. Chem Commun 48:9580–9582

    Article  Google Scholar 

  • Pope M, Swenberg CE (1982) Electronic processes in organic crystals. Clarendon, Oxford

    Google Scholar 

  • Pope M, Swenberg CE (1999) Electronic processes in organic-crystals. Oxford University Press, New York

    Google Scholar 

  • Ragni R, Plummer EA, Brunner K, Hofstraat JW, Babudri F, Farinola GM, Naso F, De Cola L (2006) Blue emitting iridium complexes: synthesis, photophysics and phosphorescent devices. J Mater Chem 16:1161–1170

    Article  Google Scholar 

  • Reineke S, Baldo MA (2012) Recent progress in the understanding of exciton dynamics within phosphorescent OLEDs. Physica Status Solidi A 209:2341–2353

    Article  Google Scholar 

  • Reineke S, Thomschke M, Lussem B, Leo K (2013) White organic light-emitting diodes: status and perspective. Rev Mod Phys 85:1245–1293

    Article  Google Scholar 

  • Saitoh A, Yamada N, Yashima M, Okinaka K, Senoo A, Ueno K, Tanaka D, Yashiro R (2004) Novel fluorene-based blue emitters for high performance OLEDs. Proc Soc Inf Disp 150–153

    Google Scholar 

  • Sajoto T, Djurovich PI, Tamayo A, Yousufuddin M, Bau R, Thompson ME, Holmes RJ, Forrest SR (2005) Blue and near-UV phosphorescence from iridium complexes with cyclometalated pyrazolyl or N-heterocyclic carbene ligands. Inorg Chem 44:7992–8003

    Article  Google Scholar 

  • Sato K, Shizu K, Yoshimura K, Kawada A, Miyazaki H, Adachi C (2013) Organic luminescent molecule with energetically equivalent singlet and triplet excited states for organic light-emitting diodes. Phys Rev Lett 110:247401

    Article  Google Scholar 

  • Serevicius T, Nakagawa T, Kuo MC, Cheng SH, Wong KT, Chang CH, Kwong RC, Xia S, Adachi C (2013) Enhanced electroluminescence based on thermally activated delayed fluorescence from a carbazole-triazine derivative. Phys Chem Chem Phys 15:15850–15855

    Article  Google Scholar 

  • Shi JM, Tang CW (2002) Anthracene derivatives for stable blue-emitting organic electroluminescence devices. Appl Phys Lett 80:3201–3203

    Article  Google Scholar 

  • Shinar J, Shinar R (2008) Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview. J Phys D Appl Phys 41:133001

    Article  Google Scholar 

  • Si ZJ, Li J, Li B, Liu SY, Li WL (2009) High light electroluminescence of novel Cu(I) complexes. J Lumin 129:181–186

    Article  Google Scholar 

  • Smith LH, Wasey JAE, Barnes WL (2004) Light outcoupling efficiency of top-emitting organic light-emitting diodes. Appl Phys Lett 84:2986–2988

    Article  Google Scholar 

  • Son HJ, Han WS, Chun JY, Kang BK, Kwon SN, Ko J, Han SJ, Lee C, Kim SJ, Kang SO (2008) Generation of blue light-emitting zinc complexes by band-gap control of the oxazolyl phenolate ligand system: syntheses, characterizations, and organic light emitting device applications of 4-coordinated bis(2-oxazolylphenolate) zinc(II) complexes. Inorg Chem 47:5666–5676

    Article  Google Scholar 

  • Swanson SA, Wallraff GM, Chen JP, Zhang WJ, Bozano LD, Carter KR, Salem JR, Villa R, Scott JC (2003) Stable and efficient fluorescent red and green dyes for external and internal conversion of blue OLED emission. Chem Mater 15:2305–2312

    Article  Google Scholar 

  • Tamayo AB, Alleyne BD, Djurovich PI, Lamansky S, Tsyba I, Ho NN, Bau R, Thompson ME (2003) Synthesis and characterization of facial and meridional tris-cyclometalated iridium(III) complexes. J Am Chem Soc 125:7377–7387

    Article  Google Scholar 

  • Tanaka D, Sasabe H, Li YJ, Su SJ, Takeda T, Kido J (2007) Ultra high efficiency green organic light-emitting devices. Jpn J Appl Phys 2(46):L10–L12

    Article  Google Scholar 

  • Tang CW (1986) 2-layer organic photovoltaic cell. Appl Phys Lett 48:183–185

    Article  Google Scholar 

  • Tang CW, Vanslyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913–915

    Article  Google Scholar 

  • Thompson M (2007) The evolution of organometallic complexes in organic light – emitting devices. MRS Bull 32:694–701

    Article  Google Scholar 

  • Tsuboyama A, Iwawaki H, Furugori M, Mukaide T, Kamatani J, Igawa S, Moriyama T, Miura S, Takiguchi T, Okada S, Hoshino M, Ueno K (2003) Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode. J Am Chem Soc 125:12971–12979

    Article  Google Scholar 

  • Tu GL, Zhou QG, Cheng YX, Wang LX, Ma DG, Jing XB, Wang FS (2004) White electroluminescence from polyfluorene chemically doped with 1,8-napthalimide moieties. Appl Phys Lett 85:2172–2174

    Article  Google Scholar 

  • Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C (2012) Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492:234–238

    Article  Google Scholar 

  • Wang YZ, Sun RG, Meghdadi F, Leising G, Epstein AJ (1999) Multicolor multilayer light-emitting devices based on pyridine-containing conjugated polymers and para-sexiphenyl oligomer. Appl Phys Lett 74:3613–3615

    Article  Google Scholar 

  • Wen SW, Lee MT, Chen CH (2005) Recent development of blue fluorescent OLED materials and devices. J Disp Technol 1:90–99

    Article  Google Scholar 

  • Wu LL, Yang CH, Sun IW, Chu SY, Kao PC, Huang HH (2007) Photophysical and electrochemical properties of blue phosphorescent iridium(III) complexes. Organometallics 26:2017–2023

    Article  Google Scholar 

  • Xiao LX, Chen ZJ, Qu B, Luo JX, Kong S, Gong QH, Kido JJ (2011) Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv Mater 23:926–952

    Article  Google Scholar 

  • Xie HZ, Liu MW, Wang OY, Zhang XH, Lee CS, Hung LS, Lee ST, Teng PF, Kwong HL, Zheng H, Che CM (2001) Reduction of self-quenching effect in organic electrophosphorescence emitting devices via the use of sterically hindered spacers in phosphorescence molecules. Adv Mater 13:1245–1248

    Article  Google Scholar 

  • Xie WF, Liu SY, Zhao Y (2003) A nondoped-type small molecule white organic light-emitting device. J Phys D Appl Phys 36:1246–1248

    Article  Google Scholar 

  • Xu ML, Wang GY, Zhou R, An ZW, Zhou Q, Li W (2007) Tuning iridium(III) complexes containing 2-benzo[b]thiophen-2-yl-pyridine based ligands in the red region. Inorg Chim Acta 360:3149–3154

    Article  Google Scholar 

  • Yang XH, Wang ZX, Madakuni S, Li J, Jabbour GE (2008) Efficient blue- and white-emitting electrophosphorescent devices based on platinum(II) [1,3-difluoro-4,6-di(2-pyridinyl)benzene] chloride. Adv Mater 20:2405–2409

    Article  Google Scholar 

  • Yeh CC, Lee MT, Chen HH, Chen CH (2004) High-performance blue OLEDs based on sterically hindered pyrene ost material. Proc Soc Inf Disp 788–792

    Google Scholar 

  • Yersin H, Donges D, Humbs W, Strasser J, Sitters R, Glasbeek M (2002) Organometallic Pt(II) compounds. A complementary study of a triplet emitter based on optical high-resolution and optically detected magnetic resonance spectroscopy. Inorg Chem 41:4915–4922

    Article  Google Scholar 

  • Zhang LM, Li B, Su ZM (2009) Realization of high-energy emission from [Cu(N-N)(P-P)](+) complexes for organic light-emitting diode applications. J Phys Chem C 113:13968–13973

    Article  Google Scholar 

  • Zhang BH, Qin CJ, Ding JQ, Chen L, Xie ZY, Cheng YX, Wang LX (2010) High-performance all-polymer white-light-emitting diodes using polyfluorene containing phosphonate groups as an efficient electron-injection layer. Adv Funct Mater 20:2951–2957

    Article  Google Scholar 

  • Zhang QS, Li J, Shizu K, Huang SP, Hirata S, Miyazaki H, Adachi C (2012) Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes. J Am Chem Soc 134:14706–14709

    Article  Google Scholar 

  • Zheng Y, Eom SH, Chopra N, Lee JW, So F, Xue JG (2008) Efficient deep-blue phosphorescent organic light-emitting device with improved electron and exciton confinement. Appl Phys Lett 92:223301

    Article  Google Scholar 

  • Zhou GJ, Wong WY, Yao B, Xie ZY, Wang LX (2007) Triphenylamine-dendronized pure red iridium phosphors with superior OLED efficiency/color purity trade-offs. Angew Chem Int Ed 46:1149–1151

    Article  Google Scholar 

  • Zhou GJ, Wang Q, Ho CL, Wong WY, Ma DG, Wang LX, Lin ZY (2008a) Robust tris-cyclometalated iridium(III) phosphors with ligands for effective charge carrier injection/transport: synthesis, redox, photophysical, and electrophosphorescent behavior. Chem Asian J 3:1830–1841

    Article  Google Scholar 

  • Zhou GJ, Ho CL, Wong WY, Wang Q, Ma DG, Wang LX, Lin ZY, Marder TB, Beeby A (2008b) Manipulating charge-transfer character with electron-withdrawing main-group moieties for the color tuning of iridium electrophosphors. Adv Funct Mater 18:499–511

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Yonghua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Yonghua, C., Dongge, M. (2014). White OLED Materials. In: Karlicek, R., Sun, CC., Zissis, G., Ma, R. (eds) Handbook of Advanced Lighting Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-00295-8_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00295-8_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-00295-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics