Skip to main content

Distributed Generation for Access to Electricity: “Off-Main-Grid” Systems from Home-Based to Microgrid

  • Chapter
  • First Online:
Renewable Energy for Unleashing Sustainable Development

Abstract

Addressing the issue of rural electrification means contributing to poverty alleviation for one billion people in the World. The traditional approach for increasing electricity access in rural areas is grid extension, nevertheless large parts of these areas have low accessibility, low values of load demand and load factor. For these reasons, grid extension often results to be economically unfeasible. In this case Distributed Generation systems become the most appropriate technology option since they can be installed close to the load, they can be sized in order to best fit with local load demand, and they can be fuelled by local resources (i.e. renewables). This chapter introduces Distributed Generation (Paragraph “Electrification: the parabola of Distributed Generation”), it proposes a definition and a classification of Distributed Generation tailored to developing countries (Paragraph “Definition and classification for developing countries”), it presents the context of rural areas which are the targets for electrification strategies based on “off-main-grid” systems (Paragraph “Energy in rural areas: the target context for “off-main-grid” systems”), and finally it describes the main technical features and parameters that characterize “off-main-grid” systems (Paragraph “off-main-grid” systems).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here DG keeps the general meaning given at the beginning of the chapter.

References

  1. Pepermans G, Driesen J, Haeseldonckx D, Belmans R, D’haeseleer W (2005) Distributed generation: definition, benefits and issues. Energy Policy 33(6):787–798. doi:10.1016/j.enpol.2003.10.004

    Google Scholar 

  2. Varley C, Co-operation OfE, Development, Lammers G, Agency IE (1999) Electricity market reform: an IEA handbook. OECD/IEA

    Google Scholar 

  3. Mostert W (2008) Review of experience with rural electrification agencies: lesson for Africa. EU Energy Initiative Partnership Dialogue Facility. http://www.mostert.dk/pdf/Experiences%20with%20Rural%20Electrification%20Agencies.pdf

  4. Alanne K, Saari A (2006) Distributed energy generation and sustainable development. Renew Sustain Energy Rev 10(6):539–558. doi:10.1016/j.rser.2004.11.004

  5. Cook P (2011) Infrastructure, rural electrification and development. Energy Sustain Dev 15(3):304–313. doi:10.1016/j.esd.2011.07.008

  6. Lahimer AA, Alghoul MA, Yousif F, Razykov TM, Amin N, Sopian K (2013) Research and development aspects on decentralized electrification options for rural household. Renew Sustain Energy Rev 24(0):314–324. doi:10.1016/j.rser.2013.03.057

  7. Turkson J, Wohlgemuth N (2000) Power sector reform and distributed generation in sub-Saharan Africa. Energy Policy 29(2):135–145. doi:10.1016/S0301-4215(00)00112-9

  8. Chiradeja P, Ramakumar R (2004) An approach to quantify the technical benefits of distributed generation. IEEE Trans Energy Convers 19(4):764–773. doi:10.1109/TEC.2004.827704

    Article  Google Scholar 

  9. Karger CR, Hennings W (2009) Sustainability evaluation of decentralized electricity generation. Renew Sustain Energy Rev 13(3):583–593. doi:10.1016/j.rser.2007.11.003

    Google Scholar 

  10. Zomers A (2003) The challenge of rural electrification. Energy Sustain Dev 7(1):69–76. doi:10.1016/S0973-0826(08)60349-X

  11. Thiam D-R (2010) Renewable decentralized in developing countries: appraisal from microgrids project in Senegal. Renew Energy 35(8):1615–1623. doi:10.1016/j.renene.2010.01.015

  12. Thiam D-R, Benders RMJ, Moll HC (2012) Modeling the transition towards a sustainable energy production in developing nations. Appl Energy 94(0):98–108. doi:10.1016/j.apenergy.2012.01.011

  13. Kaundinya DP, Balachandra P, Ravindranath NH (2009) Grid-connected versus stand-alone energy systems for decentralized power—a review of literature. Renew Sustain Energy Rev 13(8):2041–2050. doi:10.1016/j.rser.2009.02.002

    Google Scholar 

  14. Palit D, Chaurey A (2011) Off-grid rural electrification experiences from South Asia: status and best practices. Energy Sustain Dev 15(3):266–276. doi:10.1016/j.esd.2011.07.004

  15. Narula K, Nagai Y, Pachauri S (2012) The role of Decentralized Distributed Generation in achieving universal rural electrification in South Asia by 2030. Energy Policy 47(0):345–357. doi:10.1016/j.enpol.2012.04.075

  16. Chaurey A, Ranganathan M, Mohanty P (2004) Electricity access for geographically disadvantaged rural communities—technology and policy insights. Energy Policy 32(15):1693–1705. doi:10.1016/S0301-4215(03)00160-5

    Google Scholar 

  17. Thiam DR (2011) An energy pricing scheme for the diffusion of decentralized renewable technology investment in developing countries. Energy Policy 39(7):4284–4297. doi:10.1016/j.enpol.2011.04.046

  18. Welsch M, Bazilian M, Howells M, Divan D, Elzinga D, Strbac G, Jones L, Keane A, Gielen D, Balijepalli VSKM, Brew-Hammond A, Yumkella K (2013) Smart and Just Grids for sub-Saharan Africa: Exploring options. Renew Sustain Energy Rev 20(0):336–352. doi:10.1016/j.rser.2012.11.004

  19. Energy Poverty: How to Make Modern Energy Access Universal? Special Early Excerpt of the World Energy Outlook 2010 for the UN General Assembly on the Millennium Development Goals (2010). International Energy Agency

    Google Scholar 

  20. Mainali B, Silveira S (2013) Alternative pathways for providing access to electricity in developing countries. Renew Energy 57(0):299–310. doi:10.1016/j.renene.2013.01.057

  21. Mahapatra S, Dasappa S (2012) Rural electrification: optimising the choice between decentralised renewable energy sources and grid extension. Energy Sustain Dev 16(2):146–154. doi:10.1016/j.esd.2012.01.006

  22. Levin T, Thomas VM (2012) Least-cost network evaluation of centralized and decentralized contributions to global electrification. Energy Policy 41(0):286–302. doi:10.1016/j.enpol.2011.10.048

    Google Scholar 

  23. Nouni MR, Mullick SC, Kandpal TC (2009) Providing electricity access to remote areas in India: Niche areas for decentralized electricity supply. Renew Energy 34(2):430–434. doi:10.1016/j.renene.2008.05.006

    Google Scholar 

  24. Ackermann T, Andersson G, Söder L (2001) Distributed generation: a definition. Electric Power Syst Res 57(3):195–204. doi:10.1016/S0378-7796(01)00101-8

    Google Scholar 

  25. Edenhofer O, Pichs-Madruga R, Sokona Y, III. IPoCCWG (2011) Renewable Energy Sources and Climate Change Mitigation: special report of the intergovernmental panel on climate change. Cambridge University Press

    Google Scholar 

  26. Paleta R, Pina A, Silva CA (2012) Remote autonomous energy systems project: towards sustainability in developing countries. Energy 48(1):431–439. doi:10.1016/j.energy.2012.06.004

    Google Scholar 

  27. Silva Herran D, Nakata T (2012) Design of decentralized energy systems for rural electrification in developing countries considering regional disparity. Appl Energy 91(1):130–145. doi:10.1016/j.apenergy.2011.09.022

  28. Javadi FS, Rismanchi B, Sarraf M, Afshar O, Saidur R, Ping HW, Rahim NA (2013) Global policy of rural electrification. Renew Sustain Energy Rev 19(0):402–416. doi:10.1016/j.rser.2012.11.053

  29. Murphy JT (2001) Making the energy transition in rural east Africa: Is leapfrogging an alternative? Technol Forecast Soc Change 68(2):173–193. doi:10.1016/S0040-1625(99)00091-8

  30. Bhattacharyya SC (2006) Renewable energies and the poor: niche or nexus? Energy Policy 34(6):659–663. doi:10.1016/j.enpol.2004.08.009

    Google Scholar 

  31. Karekezi S, Kithyoma W (2002) Renewable energy strategies for rural Africa: is a PV-led renewable energy strategy the right approach for providing modern energy to the rural poor of sub-Saharan Africa? Energy Policy 30(11–12):1071–1086. doi:10.1016/S0301-4215(02)00059-9

  32. Kaygusuz K (2011) Energy services and energy poverty for sustainable rural development. Renew Sustain Energy Rev 15(2):936–947. doi:10.1016/j.rser.2010.11.003

  33. World Bank (2008) The welfare impact of rural electrification: a reassessment of the costs and benefits. World Bank

    Google Scholar 

  34. Bhattacharyya SC (2012) Energy access programmes and sustainable development: a critical review and analysis. Energy Sustain Dev 16(3):260–271. doi:10.1016/j.esd.2012.05.002

  35. Schäfer M, Kebir N, Neumann K (2011) Research needs for meeting the challenge of decentralized energy supply in developing countries. Energy Sustain Dev 15(3):324–329. doi:10.1016/j.esd.2011.07.001

  36. Ramakumar R, Hughes WL (1981) Renewable energy sources and rural development in developing countries. IEEE Trans Edu 24(3):242–251

    Article  Google Scholar 

  37. Ramesh J, Maggo JN, Energy IABo (1985) Towards a perspective on energy demand and supply in India in 2004/2005. Advisory Board on Energy

    Google Scholar 

  38. Goldemberg J, Johansson TB, Reddy AK, Williams RH (1985) Basic needs and much more with one kilowatt per capita. Ambio 14:190–200

    Google Scholar 

  39. Williams A, Porter S (2006) Comparison of hydropower options for developing countries with regard to the environmental, social and economic aspects. Small 1:10MW

    Google Scholar 

  40. FAO (1995) Future energy requirements for Africa’s agriculture. Food and Agriculture Organization of the United Nations

    Google Scholar 

  41. Council WE, Food, Nations AOotU (1999) The challenge of rural energy poverty in developing countries. World Energy Council

    Google Scholar 

  42. World Resource Institute (1996) World resources: 1996–1997: [a guide to the global environment]. Oxford University Press

    Google Scholar 

  43. Dorji T, Urmee T, Jennings P (2012) Options for off-grid electrification in the Kingdom of Bhutan. Renew Energy 45(0):51–58. doi:10.1016/j.renene.2012.02.012

  44. Mainali B, Silveira S (2012) Renewable energy markets in rural electrification: country case Nepal. Energy Sustain Dev 16(2):168–178. doi:10.1016/j.esd.2012.03.001

  45. Al-Soud MS, Hrayshat ES (2004) Rural photovoltaic electrification program in Jordan. Renew Sustain Energy Rev 8(6):593–598. doi:10.1016/j.rser.2004.01.002

  46. Pinheiro G, Rendeiro G, Pinho J, Macedo E (2012) Sustainable management model for rural electrification: Case study based on biomass solid waste considering the Brazilian regulation policy. Renew Energy 37(1):379–386. doi:10.1016/j.renene.2011.07.004

  47. Akorede MF, Hizam H, Pouresmaeil E (2010) Distributed energy resources and benefits to the environment. Renew Sustain Energy Rev 14(2):724–734. doi:10.1016/j.rser.2009.10.025

  48. El-Khattam W, Salama MMA (2004) Distributed generation technologies, definitions and benefits. Electric Power Syst Res 71(2):119–128. doi:10.1016/j.epsr.2004.01.006

  49. Gustavsson M, Mtonga D (2005) Lead-acid battery capacity in solar home systems—field tests and experiences in Lundazi, Zambia. Solar Energy 79(5):551–558. doi:10.1016/j.solener.2004.10.010

  50. Dell RM, Rand DAJ (2001) Energy storage—a key technology for global energy sustainability. J Power Sourc 100(1–2):2–17. doi:10.1016/S0378-7753(01)00894-1

    Google Scholar 

  51. Nguyen KQ (2007) Alternatives to grid extension for rural electrification: decentralized renewable energy technologies in Vietnam. Energy Policy 35(4):2579–2589. doi:10.1016/j.enpol.2006.10.004

  52. Díaz P, Arias CA, Peña R, Sandoval D (2010) FAR from the grid: a rural electrification field study. Renew Energy 35(12):2829–2834. doi:10.1016/j.renene.2010.05.005

    Google Scholar 

  53. Kirubakaran V, Sivaramakrishnan V, Nalini R, Sekar T, Premalatha M, Subramanian P (2009) A review on gasification of biomass. Renew Sustain Energy Rev 13(1):179–186. doi:10.1016/j.rser.2007.07.001

    Google Scholar 

  54. ESMAP (2007) Technical and economic assessment of off-grid, mini-grid, and grid electrification technologies

    Google Scholar 

  55. Mahapatra S, Chanakya HN, Dasappa S (2009) Evaluation of various energy devices for domestic lighting in India: Technology, economics and CO2 emissions. Energy Sustain Dev 13(4):271–279. doi:10.1016/j.esd.2009.10.005

  56. Kishore VVN, Jagu D, Nand Gopal E (2013) Technology choices for off-grid electrification. In: Bhattacharyya S (ed) Rural electrification through decentralised off-grid systems in developing countries. Green Energy Technol. Springer, London, pp 39–72. doi:10.1007/978-1-4471-4673-5_3

  57. ARE (2010) Hybrid mini-grids for rural electrification: lesson learned

    Google Scholar 

  58. Gurung A, Gurung OP, Oh SE (2011) The potential of a renewable energy technology for rural electrification in Nepal: A case study from Tangting. Renew Energy 36(11):3203–3210. doi:10.1016/j.renene.2011.03.012

  59. REEEP (2009) 50 ways to eliminate kerosene lighting

    Google Scholar 

  60. Maher P, Smith NPA, Williams AA (2003) Assessment of pico hydro as an option for off-grid electrification in Kenya. Renew Energy 28(9):1357–1369. doi:10.1016/S0960-1481(02)00216-1

  61. Otaki K, Woods J, Ellegård A, Gustavsson M, Nordström M (2003) Vietnam Village Hydro-a strategic rural development model. Renew Energy Dev 16(1):1–3

    Google Scholar 

  62. Alvial-Palavicino C, Garrido-Echeverría N, Jiménez-Estévez G, Reyes L, Palma-Behnke R (2011) A methodology for community engagement in the introduction of renewable based smart microgrid. Energy Sustain Dev 15(3):314–323. doi:10.1016/j.esd.2011.06.007

  63. Chaurey A, Kandpal TC (2010) A techno-economic comparison of rural electrification based on solar home systems and PV microgrids. Energy Policy 38(6):3118–3129. doi:10.1016/j.enpol.2010.01.052

    Google Scholar 

  64. ARE (2011) Rural electrification with renewable energy. Technologies, quality standards and business models

    Google Scholar 

  65. Martinot E (2013) Renewables 2013 global status report. Worldwatch Institute, Paris

    Google Scholar 

  66. Lemaire X (2011) Off-grid electrification with solar home systems: The experience of a fee-for-service concession in South Africa. Energy Sustain Dev 15(3):277–283. doi:10.1016/j.esd.2011.07.005

  67. Justo JJ, Mwasilu F, Lee J, Jung J-W (2013) AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renew Sustain Energy Rev 24(0):387–405. doi:10.1016/j.rser.2013.03.067

  68. IEA (1998) Projected costs of generating electricity update 1998: Update 1998. OECD/IEA, Paris

    Google Scholar 

  69. IEA (2010) Projected Costs of Generating Electricity 2010. OECD/IEA, Paris

    Google Scholar 

  70. PB Power (2004) The cost of generating electricity. Royal Academy of Engineering

    Google Scholar 

  71. Ayres M, MacRae M, Stogran M (2004) Levelised unit electricity cost comparison of alternate technologies for baseload generation in Ontario. Prepared for the Canadian Nuclear Association, Calgary: Canadian Energy Research Institute

    Google Scholar 

  72. Campbell M, Aschenbrenner P, Blunden J, Smeloff E, Wright S (2008) The drivers of the levelized cost of electricity for utility-scale photovoltaics. SunPower Corp

    Google Scholar 

  73. Branker K, Pathak MJM, Pearce JM (2011) A review of solar photovoltaic levelized cost of electricity. Renew Sustain Energy Rev 15(9):4470–4482. doi:10.1016/j.rser.2011.07.104

  74. Bhattacharyya SC (2012) Review of alternative methodologies for analysing off-grid electricity supply. Renew Sustain Energy Rev 16(1):677–694. doi:10.1016/j.rser.2011.08.033

  75. Szabó S, Bódis K, Huld T, Moner-Girona M (2011) Energy solutions in rural Africa: mapping electrification costs of distributed solar and diesel generation versus grid extension. Environ Res Lett 6(3):034002

    Article  Google Scholar 

  76. Bouffard F, Kirschen DS (2008) Centralised and distributed electricity systems. Energy Policy 36(12):4504–4508. doi:10.1016/j.enpol.2008.09.060

    Google Scholar 

  77. Rae C, Bradley F (2012) Energy autonomy in sustainable communities—a review of key issues. Renew Sustain Energy Rev 16(9):6497–6506. doi:10.1016/j.rser.2012.08.002

    Google Scholar 

  78. Lopes JAP, Hatziargyriou N, Mutale J, Djapic P, Jenkins N (2007) Integrating distributed generation into electric power systems: a review of drivers, challenges and opportunities. Electric Power Syst Res 77(9):1189–1203. doi:10.1016/j.epsr.2006.08.016

  79. Gullì F (2006) Small distributed generation versus centralised supply: a social cost–benefit analysis in the residential and service sectors. Energy Policy 34(7):804–832. doi:10.1016/j.enpol.2004.08.008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Mandelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mandelli, S., Mereu, R. (2013). Distributed Generation for Access to Electricity: “Off-Main-Grid” Systems from Home-Based to Microgrid. In: Colombo, E., Bologna, S., Masera, D. (eds) Renewable Energy for Unleashing Sustainable Development. Springer, Cham. https://doi.org/10.1007/978-3-319-00284-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00284-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00283-5

  • Online ISBN: 978-3-319-00284-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics