Skip to main content

On Symmetries of Extremal Black Holes with One and Two Centers

  • Conference paper
  • First Online:
Black Objects in Supergravity

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 144))

Abstract

After a brief introduction to the Attractor Mechanism, we review the appearance of groups of type \(E_{7}\) as generalized electric-magnetic duality symmetries in locally supersymmetric theories of gravity, with particular emphasis on the symplectic structure of fluxes in the background of extremal black hole solutions, with one or two centers. In the latter case, the role of an “horizontal” symmetry \(SL_{h}\left( 2,\mathbb{R }\right) \) is elucidated by presenting a set of two-centered relations governing the structure of two-centered invariant polynomials.

Based on Lectures given by SF and AM at the School “Black Objects in Supergravity” (BOSS 2011), INFN—LNF, Rome, Italy, May 9-13 2011. To appear in the Proceedings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We recall that a point \(x_{fix}\) where the phase velocity \(v\left( x_{fix}\right) \) vanishes is called a fixed point, and it gives a representation of the considered dynamical system in its equilibrium state,

    $$\begin{aligned} v\left( x_{fix}\right) =0. \end{aligned}$$

    The fixed point is said to be an attractor of some motion \(x\left( t\right) \) if

    $$\begin{aligned} lim_{t\rightarrow \infty }x(t)=x_{fix}. \end{aligned}$$
  2. 2.

    Here \(U\)-duality is referred to as the “continuous” symmetries of [30, 31]. Their discrete versions are the \(U\)-duality non-perturbative string theory symmetries introduced by Hull and Townsend [32].

  3. 3.

    For related results in terms of a map formulated in the “\(4D/5D\) special coordinates” symplectic frame (and thus manifestly covariant under the \(d=5\) \(U\)-duality group \(G_{5}\)), see e.g. [54, 55].

References

  1. S. Ferrara, R. Kallosh, A. Strominger, N=2 extremal black holes. Phys. Rev. D52, 5412 (1995). hep-th/9508072

    Google Scholar 

  2. A. Strominger, Macroscopic entropy of N=2 extremal black holes. Phys. Lett. B383, 39 (1996). hep-th/9602111

    Google Scholar 

  3. S. Ferrara, R. Kallosh, Supersymmetry and attractors. Phys. Rev. D54, 1514 (1996). hep-th/9602136

    Google Scholar 

  4. S. Ferrara, R. Kallosh, Universality of supersymmetric attractors. Phys. Rev. D54, 1525 (1996). hep-th/9603090

    Google Scholar 

  5. S. Ferrara, G.W. Gibbons, R. Kallosh, Black holes and critical points in moduli space. Nucl. Phys. B500, 75 (1997). hep-th/9702103

    Google Scholar 

  6. S. Bellucci, S. Ferrara, A. Marrani, Supersymmetric mechanics. Vol. 2: the attractor mechanism and space-time singularities. Lecture Notes in Physics, vol. 701 (Springer-Verlag, Heidelberg, 2006)

    Google Scholar 

  7. L. Andrianopoli, R. D’Auria, S. Ferrara, U duality and central charges in various dimensions revisited. Int. J. Mod. Phys. A13, 431 (1998). hep-th/9612105

    Google Scholar 

  8. B. Pioline, Lectures on black holes, topological strings and quantum attractors, Class. Quant. Grav. 23, S981 (2006). hep-th/0607227

    Google Scholar 

  9. L. Andrianopoli, R. D’Auria, S. Ferrara, M. Trigiante, Extremal black holes in supergravity. Lecture Notes in Physics, vol. 737, (Springer-Verlag, Heidelberg, 2008), p. 661. hep-th/0611345

    Google Scholar 

  10. A. Sen, Black hole entropy function, attractors and precision counting of microstates. Gen. Rel. Grav. 40, 2249 (2008). arXiv:0708.1270

    Google Scholar 

  11. S. Bellucci, S. Ferrara, R. Kallosh, A. Marrani, Extremal black hole and flux vacua attractors. Lecture Notes in Physics, vol. 755, (Springer-Verlag, Heidelberg, 2008), p. 115. arXiv:0711.4547

    Google Scholar 

  12. S. Ferrara, K. Hayakawa, A. Marrani, Erice Lectures on black holes and attractors. Fortsch. Phys. 56, 993 (2008). arXiv:0805.2498

    Google Scholar 

  13. S. Bellucci, S. Ferrara, M. Günaydin, A. Marrani, SAM lectures on extremal black holes in d=4 extended supergravity. in The Attractor Mechanism Springer Proceedings in Physics, vol. 134, 1–30 (2010). arXiv:0905.3739

    Google Scholar 

  14. M. Günaydin, Lectures on spectrum generating symmetries and U-duality in supergravity, extremal black holes, quantum attractors and harmonic superspace. in The Attractor Mechanism Springer Proceedings in Physics, vol. 134, 31–84 (2010). arXiv:0908.0374

    Google Scholar 

  15. G. Dall’Agata, Black holes in supergravity: flow equations and duality. in Supersymmetric Gravity and Black Holes Springer Proceedings in Physics, vol. 142, 1–45, (2013). arXiv:1106.2611 [hep-th]

    Google Scholar 

  16. A. Ceresole, Extremal black hole flows and duality. Fortsch. Phys. 59, 545 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Frè, T. Magri, N=2 supergravity and N=2 super Yang-Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map. J. Geom. Phys. 23, 111 (1997). hep-th/9605032

    Google Scholar 

  18. G.W. Gibbons, C.M. Hull, A bogomol’ny bound for general relativity and solitons in N=2 supergravity. Phys. Lett. B109, 190 (1982)

    MathSciNet  ADS  Google Scholar 

  19. G.W. Gibbons, P.K. Townsend, Vacuum interpolation in supergravity via super-p-branes. Phys. Rev. Lett. 71, 3754 (1993). hep-th/9307049

    Google Scholar 

  20. R. Arnowitt, S. Deser, C.W. Misner, The dynamics of general relativity. in Gravitation: An Introduction to Current Research, ed. by L. Witten (Wiley, New York, 1962)

    Google Scholar 

  21. B. Bertotti, Uniform electromagnetic field in the theory of general relativity. Phys. Rev. 116, 1331 (1959)

    Google Scholar 

  22. I. Robinson, Bull. Acad. Polon. 7, 351 (1959)

    Google Scholar 

  23. J.D. Bekenstein, Phys. Rev. D7, 2333 (1973)

    MathSciNet  ADS  Google Scholar 

  24. S.W. Hawking, Phys. Rev. Lett. 26, 1344 (1971)

    Google Scholar 

  25. C. DeWitt, B.S. DeWitt, Black Holes (Les Houches 1972) (Gordon and Breach, New York, 1973)

    Google Scholar 

  26. S.W. Hawking, Nature 248, 30 (1974)

    Google Scholar 

  27. S.W. Hawking, Comm. Math. Phys. 43, 199 (1975)

    Google Scholar 

  28. J.F. Luciani, Coupling of O(2) supergravity with several vector multiplets. Nucl. Phys. B132, 325 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  29. L. Castellani, A. Ceresole, S. Ferrara, R. D’Auria, P. Fré, E. Maina, The complete N=3 matter coupled supergravity. Nucl. Phys. B268, 317 (1986)

    Article  ADS  Google Scholar 

  30. E. Cremmer, B. Julia, The N=8 supergravity theory. 1. The Lagrangian. Phys. Lett. B80, 48 (1978)

    ADS  Google Scholar 

  31. E. Cremmer, B. Julia, The SO(8) supergravity. Nucl. Phys. B159, 141 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  32. C. Hull, P.K. Townsend, Unity of superstring dualities. Nucl. Phys. B438, 109 (1995). hep-th/9410167

    Google Scholar 

  33. M.K. Gaillard, B. Zumino, Duality rotations for interacting fields. Nucl. Phys. B193, 221 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  34. S. Ferrara, M. Günaydin, Orbits of exceptional groups, duality and BPS states in string theory. Int. J. Mod. Phys. A13, 2075 (1998). hep-th/9708025

    Google Scholar 

  35. R. D’Auria, S. Ferrara, M.A. Lledó, On central charges and Hamiltonians for 0-brane dynamics. Phys. Rev. D60, 084007 (1999). hep-th/9903089

    Google Scholar 

  36. S. Ferrara, J.M. Maldacena, Branes, central charges and U-duality invariant BPS conditions. Class. Quant. Grav. 15, 749 (1998). hep-th/9706097

    Google Scholar 

  37. A. Strominger, Special geometry. Commun. Math. Phys. 133, 163 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. B. de Wit, Introduction to black hole entropy and supersymmetry. (2005). hep-th/0503211

    Google Scholar 

  39. R.B. Brown, Groups of type \(E_{7}\). J. Reine Angew. Math. 236, 79 (1969)

    MathSciNet  MATH  Google Scholar 

  40. E. Cartan, Œuvres complètes (Editions du Centre National de la Recherche Scientifique, Paris, 1984)

    Google Scholar 

  41. P. Truini, Exceptional Lie Algebras, SU(3) and Jordan Pairs. arXiv:1112.1258 [math-ph]

    Google Scholar 

  42. B. Julia, Group disintegrations in Superspace and Supergravity, eds. by S.W. Hawking, M. Rocek (Cambridge University Press, Cambridge, 1981)

    Google Scholar 

  43. E. Cremmer, Supergravities in 5 dimensions. in Superspace and Supergravity, eds. by S.W.Hawking, M. Rocek (Cambridge University Press, Cambridge, 1981)

    Google Scholar 

  44. S. Ferrara, P. Van Nieuwenhuizen, Phys. Rev. Lett. 17, 1669 (1976)

    Article  ADS  Google Scholar 

  45. S. Ferrara, C. Savoy, B. Zumino, Nucl. Phys. B121, 393 (1977)

    Article  ADS  Google Scholar 

  46. E. Cremmer, B. Julia, The SO(8) supergravity. Nucl. Phys. B159, 141 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  47. L. Borsten, D. Dahanayake, M.J. Duff, W. Rubens, Black holes admitting a Freudenthal dual. Phys. Rev. D80, 026003 (2009). [arXiv:0903.5517 [hep-th]]

    Google Scholar 

  48. S. Ferrara, A. Marrani, A. Yeranyan, Freudenthal duality and generalized special geometry. Phys. Lett. B701, 640–645 (2011). [arXiv:1102.4857 [hep-th]]

    Google Scholar 

  49. R. Kallosh, B. Kol, E(7) symmetric area of the black hole horizon. Phys. Rev. D 53, 5344 (1996). [arXiv:hep-th/9602014]

    Google Scholar 

  50. M. Gunaydin, G. Sierra, P.K. Townsend, Exceptional supergravity theories and the magic square. Phys. Lett. B133, 72 (1983)

    MathSciNet  ADS  Google Scholar 

  51. L. Borsten, M.J. Duff, S. Ferrara, A. Marrani, W. Rubens, Small orbits. Phys. Rev. D85, 086002 (2012). arXiv:1108.0424 [hep-th] (to appear in Phys. Rev. D.)

    Google Scholar 

  52. J.C. Ferrar, Strictly regular elements in Freudenthal triple systems. Trans. Amer. Math. Soc. 174, 313 (1972)

    Article  MathSciNet  Google Scholar 

  53. S. Krutelevich, Jordan algebras, exceptional groups, and higher composition laws, J. Algebra 314, 924 (2007), arXiv:math/0411104

    Google Scholar 

  54. O. Shukuzawa, Explicit classification of orbits in Jordan algebra and Freudenthal vector space over the exceptional lie groups. Commun. Algebra 341, 197 (2006)

    Google Scholar 

  55. K. Yokota, Exceptional lie groups. (2009). arXiv:0902.0431 [math.DG]

    Google Scholar 

  56. A. Marrani, E. Orazi, F. Riccioni, Exceptional reductions. J. Phys. A44, 155207 (2011). arXiv:1012.5797 [hep-th]

    Google Scholar 

  57. A. Galperin, O. Ogievetsky, Harmonic potentials for quaternionic symmetric sigma models. Phys. Lett. B301, 67 (1993). hep-th/9210153

    Google Scholar 

  58. F. Denef, Supergravity flows and D-brane stability. JHEP 0008, 050 (2000) hep-th/0005049

    Google Scholar 

  59. B. Bates, F. Denef, Exact solutions for supersymmetric stationary black hole, composites. hep-th/0304094

    Google Scholar 

  60. D. Gaiotto, W.W. Li, M. Padi, Non-supersymmetric attractor flow in symmetric spaces. JHEP 0712, 093 (2007). arXiv:0710.1638 [hep-th]

    Google Scholar 

  61. K. Goldstein, S. Katmadas, Almost BPS black holes. JHEP 0905 058 (2009). arXiv:0812.4183 [hep-th]

    Google Scholar 

  62. E.G. Gimon, F. Larsen, J. Simon, Constituent model of extremal non-BPS black holes. JHEP 0907, 052 (2009). arXiv:0903.0719 [hep-th]

    Google Scholar 

  63. I. Bena, S. Giusto, C. Ruef, N. P. Warner, Multi-center non-BPS black holes: the solution. JHEP 0911, 032 (2009). arXiv:0908.2121 [hep-th]

    Google Scholar 

  64. G. Bossard, C. Ruef, Interacting non-BPS black holes. Gen. Rel. Grav. 44, 21 (2012). arXiv:1106.5806 [hep-th]

    Google Scholar 

  65. G. Bossard, Octonionic black holes. J. High Energy Phy. 113, (2012). arXiv:1203.0530 [hep-th]

    Google Scholar 

  66. P. Fré, A.S. Sorin, Extremal multicenter black holes: nilpotent orbits and tits satake universality classes. J. High Energy Phys. 3, (2013). arXiv:1205.1233 [hep-th]

    Google Scholar 

  67. S. Ferrara, A. Marrani, E. Orazi, R. Stora, A. Yeranyan, Two-center black holes duality-invariants for stu model and its lower-rank descendants. J. Math. Phys. 52, 062302 (2011). arXiv:1011.5864 [hep-th]

    Google Scholar 

  68. P. Levay, Two-center black holes, qubits and elliptic curves. Phys. Rev. D84, 025023 (2011). arXiv:1104.0144 [hep-th]

    Google Scholar 

  69. A. Ceresole, S. Ferrara, A. Marrani, A. Yeranyan, Small black hole constituents and horizontal symmetry. JHEP 1106, 078 (2011). arXiv:1104.4652 [hep-th]

    Google Scholar 

  70. L. Andrianopoli, R.D’Auria, S. Ferrara, A. Marrani, M. Trigiante, Two-centered magical charge orbits. JHEP 1104, 041 (2011). arXiv:1101.3496 [hep-th]

    Google Scholar 

Download references

Acknowledgments

The reported results were obtained in different collaborations with Laura Andrianopoli, Leron Borsten, Anna Ceresole, Riccardo D’Auria, Mike Duff, G. W. Gibbons, Murat Günaydin, Renata Kallosh, Emanuele Orazi, William Rubens, Raymond Stora, A. Strominger, Mario Trigiante, and Armen Yeranyan, which we gratefully acknowledge. This work is supported by the ERC Advanced Grant no. 226455, “Supersymmetry, Quantum Gravity and Gauge Fields” (SUPERFIELDS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Ferrara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Ferrara, S., Marrani, A. (2013). On Symmetries of Extremal Black Holes with One and Two Centers. In: Bellucci, S. (eds) Black Objects in Supergravity. Springer Proceedings in Physics, vol 144. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00215-6_9

Download citation

Publish with us

Policies and ethics