Skip to main content

Part of the book series: Environmental Science and Engineering ((ENVENG))

  • 2288 Accesses

Abstract

PDVSA-Intevep has developed a portfolio of technologies for gas–liquid phase separation based on centrifugal forces effects on fluids of different densities. Research has been focused on both separation technologies cylindrical–conical cyclonic (CYCINT\(^{{\circledR }}\)) and multiple cylindrical cyclones (\(\mathrm{{CIMCI}}^{{\circledR }}\)), contemplating numerical modeling, construction, and extensive experimental tests conducted for a wide range of inflow rates and multiphase mixture properties (Brito et al. 2001, 2003, 2009; González et al. 2002; Martínez 2002; Carrasco 2008; Matson and Brito 2008; Cáliz et al. 2009; Valdez et al. 2009; Martínez 2010). Cyclonic separators are centrifugal technologies whose geometry construction promotes rotational flow within them. Centrifugal forces generated inside the separators conduct the fluid to follow a spiral trajectory with the heavier phase forced to flow nearby the separator walls, whilst the lighter phase is directed to the centre of the equipment ascending to the top of the device. This paper presents a comprehensive quantitative evaluation methodology based on a thorough parametric matrix developed to screen the most promising technologies based on experimental essays results. As a consequence, an optimal allocation of resources will allow further development of the top ranked technologies to conduct further field tests. The processing of experimental data from laboratory tests conducted on cyclonic technologies comprises parameters of great interest for the purpose of this evaluation. Gas carry under, liquid carry over, pressure loss, and generated G forces, in hand with liquid level control strategies, operational envelope width, operability, and compact design are some of the parameters used for the evaluation of technologies considered in this study. The evaluation of parameters was conducted through group categorization followed by variables grading on a 0–8 scale by means of a binary comparison methodology. The evaluation of technologies was conducted based on the results obtained during experimental tests and further analysis. As a result, an unbiased technology ranking was obtained, in which the multi-cylindrical technology (\(\mathrm{{CIMCI}}^{{\circledR }}\)) provides an overall best performance with emphasis in a superior gas separation efficiency and easier constructability, whilst the cylindrical-conic cyclonic technology (CYCINT\(^{{\circledR }}\)), on the other hand, presented the upmost liquid separation efficiency and wider operational envelope. Further efforts will focus on continuous development of these two technologies to provide more compact, efficient, and economical gas–liquid separation solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brito A, Colmenares J, Perdomo Y, Ortega P, Corrales F, Zapata N, Chacón L, Flores R, Lara J, Castillo F (2003) Evaluación del comportamiento del separador gas-líquido ciclónico CYCINT en función de las propiedades del fluido. INT-10139, 2003. Intevep, Los Teques.

    Google Scholar 

  • Brito A, Vielma J, Pereyra E, Trallero J, Garcia S, Cabello R, Comenares J, Terán V (2001) Ventana de operación del separador gas-líquido cilíndrico ciclónico GLCC. INT-9058, 2001. Intevep, Los Teques.

    Google Scholar 

  • Brito A, Trujillo J, López J, Blanco W (2009) Bases de diseño de un separador ciclónico de múltiples cilindros de flujo ascendente. INT-12904, 2009. Intevep, Los Teques.

    Google Scholar 

  • Cáliz L, Valdez J, Cabello R, Brito A, López J, Trujillo J (2009) Evaluación de los separadores ciclónicos CYCINT y ciclones múltiples con un sistema agua/aire en el laboratorio de flujo multifásico Norte 6. INT-12687, 2009. Intevep, Los Teques.

    Google Scholar 

  • Carrasco Y (2008) Identificación y selección de tecnologías de separación mecánica en mezclas de crudo-agua para crudos livianos y medianos. Universidad Central de Venezuela, Caracas

    Google Scholar 

  • González J, Rojas L, Casique L, Ramírez J (2002) Informe de clausura del Proyecto 6007: Evolución del desarrollo y diseño del separador CYCINT para crudos de gravedad \(^{\circ }\)API\(>\)18-agua-sólidos (\(>\)100cP). INT-7088, 2002. Intevep, Los Teques.

    Google Scholar 

  • Martínez M (2002) Diseño conceptual de separadores. Ingenieros consultores y Asociados, Venezuela

    Google Scholar 

  • Matson J, Brito A (2008) Evaluación del desempeño de dos prototipos de separadores ciclónicos gas-líquido. INT-11884, 2008. Intevep, Los Teques.

    Google Scholar 

  • Martínez M (2010) Evaluación a escala banco de un prototipo de separador CIMCI de flujo ascendente con aire y agua. Universidad Central de Venezuela, Caracas

    Google Scholar 

  • Valdez J, López J, Naveda R (2009) Evaluación de los separadores ciclónicos CYCINT y ciclones múltiples con un sistema aceite/aire en el laboratorio de flujo multifásico Norte 6. INT-12688, 2009. Intevep, Los Teques.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yessica Arellano .

Editor information

Editors and Affiliations

Appendix A: Multiple Binary Decision Method

Appendix A: Multiple Binary Decision Method

The binary comparison methodology employed for the technology evaluation is the Multiple Binary Decision Method (MBDM). The MBD method is used to assign weighting factors to different parameters comprised in an evaluation matrix and selecting, amongst different alternatives, the one that best qualifies according to the scores obtained. The procedure is detailed below and explained through a generic example:

  1. (1)

    Selection of the more relevant parameters to be considered. These parameters should be precisely defined in order to quantitatively assess the alternatives under evaluation.

  2. (2)

    Each selected parameter is assigned a weight resulting from a one-to-one comparison. This comparison determines which one of the evaluated parameters is the most important, by assigning it the value of ‘1’ and the least important resulting with a ‘0’ weight; following this procedure each parameter is compared to the remaining parameters. An illustration of the matrix obtained is shown in Table A.1.

  3. (3)

    Once the one-to-one comparison is completed and the indicative ‘ones’ and ‘zeros’ are obtained, the parameter weighting factors are computed by applying the following equation:

    $$\begin{aligned} {weight}=\frac{SW}{ST}\times 100, \end{aligned}$$
    (A.1)

    where SW represents the weight of each parameter and ST is the total sum of the parameters’ scores. Table A.2 is complemented to illustrate the weighting distribution.

  4. (4)

    Once the parameter weighting factors are obtained, the alternatives are evaluated. For the purpose of this illustration, three alternatives are proposed (I, II, and III). To obtain the most favourable alternative, all alternatives are compared to one another in reference to an alternate defined parameter. This way, alternatives I and II are compared to each other for parameter A, the alternative with the best performance gets a ‘1’; later alternatives II and III are compared and so on. Applying the weighting equation, the procedure is repeated, obtaining the alternatives’ scores by parameter. Tables A.3, A.4, A.5 and A.6 illustrate the procedure. Following the previously described steps the alternative’s partial score by parameter is obtained.

  5. (5)

    Scores obtained in Tables A.3, A.4, A.5 and A.6 are then weighted by the specific weight computed for each parameter within the Parameters’ Comparison Matrix (Table A.2). To exemplify this, take alternative II’s weight for parameter A (66.7 %), parameter A weights 33.3 % according to Table A.2, thereafter alternative II score within the general matrix is computed as follows:

    $$\begin{aligned} \frac{66.7\times 33.3}{100}=22.2\,\text {points}. \end{aligned}$$
    (A.2)

    Scores obtained from Eq. (A.2) are later tabulated and added together to obtain the general score for every alternative. The alternative with the highest score will be the preferred one. Table A.7 illustrates the general matrix of technology selection.

Table A.1 Parameters’ comparison matrix (MBDM)
Table A.2 Parameters’ comparison matrix with weights (MBDM)
Table A.3 Alternatives’ comparison matrix for parameter A (MBDM)
Table A.4 Alternatives’ comparison matrix for parameter B (MBDM)
Table A.5 Alternatives’ comparison matrix for parameter C (MBDM)
Table A.6 Alternatives’ comparison matrix for parameter D (MBDM)
Table A.7 Technology comparison general matrix (MBDM)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arellano, Y., Brito, A., Trujillo, J., Cabello, R. (2014). Comprehensive Evaluation of Gas-Liquid Cyclonic Separation Technologies. In: Sigalotti, L., Klapp, J., Sira, E. (eds) Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-00191-3_26

Download citation

Publish with us

Policies and ethics