Skip to main content

Part of the book series: Environmental Science and Engineering ((ENVENG))

  • 2264 Accesses

Abstract

The mass transport of chemical species in response to a temperature gradient, referred to as the Soret effect or thermal diffusion, leads under certain conditions to a separation of the chemical constituents. The Soret coefficient is the ratio of the thermodiffusion coefficient to the molecular diffusion coefficient. This effect along with molecular diffusion occurs in many natural phenomena and engineering systems. One early application of this effect was the separation of isotopes. Understanding the Soret effect is also important for exploring the mechanics of crude oil extraction and its reservoir characterization, as well as in the research of the global circulation of see water. It has also been used for polymer characterization by thermal field flow fractionation. Moreover, recent studies on the Soret effect of bio-systems, like protein and DNA solutions, indicate that it might help revealing the mechanisms behind the mysterious phenomenon of life. Many experimental techniques have been developed for investigation of the Soret effect: thermogravitational columns, thermal lens, diffusion cells, thermal diffusion forced Rayleigh scattering, thermal field flow fractionation, and microfluidic fluorescence. In this chapter, we focus on the investigation of thermal diffusion behaviour in simple liquid mixtures by a thermal lens method. The big advantage of the thermal lens method is that it is fast, simple, and the experimental set-up is much cheaper compared to other methods. In particular, a calibrated two-beam mode-mismatched thermal lens experiment is used for determining the Soret coefficient for isopropanol/water and ethanol/water mixtures.The fitting curves show a very good agreement between the theoretical model and the experimental data. The experimental results have also shown good agreement with available thermodiffusion coefficient data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi A, Saghir MZ, Kawaji M (2009) A new approach to evaluate the thermodiffusion factor for associating mixtures. J Chem Phys 130:064506

    Article  Google Scholar 

  • Arnaud N, Georges J (2001) Investigation of the thermal lens effect in water-ethanol mixtures: composition dependence on the refractive index gradient, the enhancement factor and the Soret effect. Spectrochim Acta A 57:1295–1301

    Article  Google Scholar 

  • Bierlein SB (1955) A phenomenological theory of the Soret diffusion. J Chem Phys 23:10–15

    Article  Google Scholar 

  • Cabrera H, Marcano A, Castellanos Y (2009a) Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry. Cond Matt Phys 9:385–389

    Google Scholar 

  • Cabrera H, Sira E, Rahn K, García-Sucre M (2009b) A thermal lens model including the Soret effect. Appl Phys Lett 94:051103

    Google Scholar 

  • Cabrera H, Marti-López L, Sira E, Rahn K, García-Sucre M (2009) Thermal lens measurement of the Soret coefficient in acetone/water mixtures. J Chem Phys 131:031106

    Article  Google Scholar 

  • Cabrera H, Cordido F, Velasquez A, Moreno P, Sira E, López-Rivera SA (2013) Measurement of the Soret coefficients in organic/water mixtures by thermal lens spectrometry. Comptes Rendus Mécanique 341:372–377

    Article  Google Scholar 

  • Giglio M, Vendramini A (1974) Thermal lens effect in a binary liquid mixture: a new effect. Appl Phys Lett 25:555–557

    Article  Google Scholar 

  • Gordon J, Leite R, Moore R, Porto S, Whinnery J (1965) Long transient effects in lasers with lasers with inserted liquid samples. J Appl Phys 36:3–8

    Article  Google Scholar 

  • Kita R, Wiegand S, Strathmann JL (2004) Sign change of the Soret coefficient of poly(ethylene oxide) in water/ethanol mixtures observed by thermal diffusion forced Rayleigh scattering. J Chem Phys 121:3874–3885

    Article  Google Scholar 

  • Kolodner P, Williams H, Moe C (1988) Optical measurement of the Soret coefficient of ethanol water solutions. J Chem Phys 88:6512–6524

    Article  Google Scholar 

  • Long M, Swofford R, Albrecht A (1976) Thermal lens technique: a new method of absorption spectroscopy. Science 191:183–185

    Article  Google Scholar 

  • Marcano A, Loper C, Melikechi N (2002) Pump-probe mode-mismatched thermal-lens Z scan. J Opt Soc Am B 19:119–124

    Article  Google Scholar 

  • Marcano A, Cabrera H, Guerra M, Cruz RA, Jacinto C, Catunda T (2006) Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement. J Opt Soc Am B 23:1408–1413

    Article  Google Scholar 

  • Mialdun A, Shetsova VM (2008) Development of optical digital interferometry technique for measurement of thermodiffusion coefficients. Int J Heat Mass Transf 51:3164–3178

    Article  Google Scholar 

  • Mialdun A, Yasnou V, Shetsova VM, Königer A, Köhler W, Bou-Ali MM (2012) A comprehensive study of diffusion, thermodiffusion, and Soret coefficients of water-isopropanol mixtures. J Chem Phys 136:244512

    Article  Google Scholar 

  • Polyakov P, Wiegand S (2009) Investigation of the Soret effect in aqueous and non-aqueous mixtures by the thermal lens technique. Phys Chem Chem Phys 11:864–871

    Article  Google Scholar 

  • Poty P, Legros JC, Thomaes G (1974) Thermal diusion in some binary liquid mixtures by the flowing cell methods. Z Naturforsch 29A:1915–1916

    Google Scholar 

  • Shen J, Lowe R, Snook R (1992) A model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry. Chem Phys 165:385–396

    Article  Google Scholar 

  • Sitzber L (1856) Diffusion zwischen ungleich erwärmten Orten gleich Zusammengesetz Lösungen. Akad Wiss Wien Math- Naturwiss Kl 20:539

    Google Scholar 

  • Soret C (1879) Sur l’état d’équilibre que prend, du point de vue de sa concentration, une dissolution saline primitivement homogène, dont deux parties sont portées à des températures différentes. Arch Sci Phys Nat 2:48–61

    Google Scholar 

  • Tyrell H (1961) Diffusion and heat flow in liquids. Butterworths, London

    Google Scholar 

  • Whinnery J (1974) Laser measurement of optical absorption in liquids. Acc Chem Res 7:225–231

    Article  Google Scholar 

  • Zhang KJ, Briggs ME, Gammon RW, Sengers JV (1996) Optical measurement of the Soret coefficient and the diffusion coefficient of liquid mixtures. J Chem Phys 104:6881–6892

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto Cabrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cabrera, H. (2014). Experimental Investigation of Thermal Diffusion in Binary Fluid Mixtures. In: Sigalotti, L., Klapp, J., Sira, E. (eds) Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-00191-3_13

Download citation

Publish with us

Policies and ethics