Skip to main content

Change and Continuity in Sound Analysis: A Review of Concepts in Regard to Musical Acoustics, Music Perception, and Transcription

  • Chapter
  • First Online:
Sound - Perception - Performance

Part of the book series: Current Research in Systematic Musicology ((CRSM,volume 1))

Abstract

Over the past decades, a broad range of software and hardware tools has become available suited to perform sound analysis both in the time domain and in the frequency. This chapter reviews a number of former and current concepts in regard to frequency measurement, melographic techniques and transcription, pitch perception and consonance as well as analysis of timbral parameters.

This article is dedicated to the memory of Walter Graf (1903–1982), one of the pioneers of sound research in Systematic and Comparative Musicology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is reported (cf. Beyer 1999, 140f., Figures 6,7,8,9,10,11) that Karl Rudolph Koenig (who invented a range of instruments for acoustics) had improved the Phonautograph by adding a conical horn to collect the sound (as was similarly done later by Edison with the Phonograph) as well as the rotating cylinder on which the sound was actually recorded as an oscillogram. As to the early history of sound analysis, see also Graf (1980, 211ff).

  2. 2.

    Some of the early research is reported (with details in regard to methods of measurement and the technology then available) in Meissner (1907), Krueger (1907), Hermann (1893), Herrmann (1908). See also Panconcelli-Calzia (1941/1994).

  3. 3.

    This is a practical definition applicable to empirical observation and measurement. In signal processing, the notion ‘instantaneous frequency’ has a more technical definition based on calculating the instantaneous (or local) phase φ(t) (a real-valued function) for a (complex-valued) function x(t) representing the signal; the instantaneous angular frequency can be determined as the derivative of the phase, that is ω(t) = φ′(t); see Cohen (1995, 39ff).

  4. 4.

    Abu Zeluf, sung by Dunya Yunis, recorded by Poul Rovsing Olsen on 4th of February, Beirut 1972. Published on the LP Music in the World of Islam, Vol. I: The Human Voice, Tangent Records TGS 131 (London 1976), B2. As to the history of the recording and its later (ab)use, see Feld and Kirgegaard (2010).

  5. 5.

    The measurements for pitch curves shown in Figs. 2 and 3 were performed with the Praat software (Boersma and Weenink 2011). A special autocorrelation method (Boersma 1993) was chosen for calculation of pitch with a time resolution of 1 ms.

  6. 6.

    The meaning of timbre in the French language comprises sound, sound colour, and also bike bell (timbre d’une bicyclette) as well as brand, mark and (postal) stamp.

  7. 7.

    Translations are from the edition of Helmholtz’ collected lectures and speeches (Helmholtz 1896).

  8. 8.

    For an in-depth discussion of the tonal and sound attributes that were used by Stumpf, Hornbostel, Wellek, etc., see Albersheim (1939) and Schneider (1997b), Kap. III.1, 404–430.

  9. 9.

    The term ‘tone colour’ (Tonfarbe, Stumpf 1890, 1926) applies to pure tones, while ‘sound colour’ (Klangfarbe) is reserved to complex tones. More empirical evidence for the fact that, by varying two physical properties (frequency, amplitude) of pure tones, one can vary more than two sensational attributes (namely, pitch, loudness, and volume), was later given by Stevens (1934).

  10. 10.

    Where, approximately, I = peff veff = p 2/Z that can be transferred to SPL [dB].

  11. 11.

    Helmholtz (1870, 179): …dass die Stärke ihrer Obertöne nicht von der Ordnungszahl derselben, sondern von deren absoluter Tonhöhe abhängt.

  12. 12.

    Meissner was a professor in Göttingen when conducting his research on vowels and sounds from musical instruments in the 1880s and 1890s. Hermann was a professor in the University of Königsberg and internationally acknowledged as author/editor of textbooks on physiology. Some of the historical background to this era of research is briefly summed up in Graf (1980, 211ff).

  13. 13.

    A copy of this Habilitationssschrift is kept in the library of the Staatliche Institut für Musikforschung of Berlin. Another copy apparently is in the Institute of Musicology at Cologne.

  14. 14.

    As to Schumann’s biography, see his Wikipedia entry and Nagel (2007, 232ff). Stumpf became an emeritus in 1921 but continued to teach (including supervision of candidates) until late in the 1920s. According to Reinecke (2003, 185) who knew Schumann personally, he was Schüler und langjähriger Assistent Carl Stumpfs. However, Stumpf (1926, 7), in the Einleitung to his Sprachlaute, mentions eleven co-workers and colleagues who had helped him in experiments on the analysis of vowels (notably Dr. von Allesch), but not Schumann who (cf. Nagel 2007, 232ff.) apparently was a paid assistant in the Institute of Physics where he worked with Arthur Wehnelt, well known for his discoveries in electronics.

  15. 15.

    The triangular double reed used for measurements is 10.5 mm wide at the opening. It is 20 mm long and is mounted on a cylindrical tube of 25 mm length and 4 mm diameter. Thereby, the total length of reed and tube is 45 mm. Recordings were made with the reed and tube put close in front to a condenser microphone (Neumann U 67, AKG C 414 B-TL II) set to cardioid and fed into a preamp and A/D converter system (Telefunken V 76, Panasonic DAT SV 3800 at 16 bit/48 kHz and RME Fireface 800 at 32 bit float/96 kHz on hard disc.

  16. 16.

    The analysis is based on STFT with an approximation of spectral peaks in the envelope per analysis frame by the Burg method (cf. Marple 1987). The three ‘formants’ in fact represent tracks of spectral envelope peaks plotted against time.

  17. 17.

    The fluctuation is evident from so-called speckles (black dots) which indicate spectral energy peaks per analysis frame.

  18. 18.

    In reed-driven instruments such as the clarinet, a range of nonlinearities is observed with respect to the vibration of the (single or double) reed, the flow of air through the slit as well as in other parameters. For details in regard to modeling and calculation, see Dalmont et al. (2000), Kergomard et al. (2000).

  19. 19.

    The difference is not identical with, yet bears some parallels to, that between bottom-up and top-down analysis as outlined in Bregman’s Auditory Scene Analysis (Bregman 1990).

  20. 20.

    Not to be confused with the subharmonic matching process that has been proposed by Terhardt (1998) for ‘pitch’ (f0) estimation of complex sounds; of course, there are some correspondences in both concepts.

  21. 21.

    For the calculation of analogue low pass and band pass filter parameters, see Fant (1952), Küpfmüller (1968).

  22. 22.

    The sonagram was produced, in spring 1978, in the lab of the Kommission für Schallforschung of the Austrian Academy of Sciences at Vienna where the present author was working for a period on invitation of Walter Graf, then head of the Kommission für Schallforschung and its lab. Fant (1952) developed a heterodyne filter that, different from the constant bandwidth filter employed in the sonagraph, offers continuously variable bandwidth along with the continuously variable center frequency.

References

  • Albersheim, G. (1939). Zur Psychologie der Ton- und Klangeigenschaften unter Berücksichtigung der ,Zweikomponententheorie‘ und der Vokalsystematik. Straßburg: Heitz.

    Google Scholar 

  • Arfib, D., Keiler, F., & Zölzer, U. (2002). Source-Filter Processing. In U. Zölzer (Ed.), DAFX. Digital Audio Effects (pp. 299–372). Chichester: Wiley.

    Google Scholar 

  • Backhaus, H. (1932). Über die Bedeutung der Ausgleichsvorgänge in der Musik. Zeitschrift für technische Physik, 13, 31–46.

    Google Scholar 

  • Backus, J. (1963). Acoustical investigations of the clarinet. Sound, 2, 22–25.

    Google Scholar 

  • Bader, R. (2002). Fraktale Dimensionen, Informationsstrukturen und Mikrorhythmik der Einschwingvorgänge von Musikinstrumenten. Ph.D. dissertation, University of Hamburg.

    Google Scholar 

  • Bader, R. (2005). Computational Mechanics of the Classical Guitar. Berlin etc.: Springer.

    Google Scholar 

  • Bader, R. (2011). Buddhism, animism, and entertainment in Cambodian melismatic chanting smot—history and tonal system. In A. Schneider & A. von Ruschkowski (Eds.), Systematic Musicology: Empirical and theoretical studies (pp. 283–305). P. Lang: Frankfurt/M.

    Google Scholar 

  • Battey, B. (2004). Bézier spline modeling of pitch-continuous melodic expression and ornamentation. Computer Music Journal, 28, 25–39.

    Google Scholar 

  • Beauchamp, J. (2007). Analysis and Synthesis of musical instrument sounds. In J. Beauchamp (Ed.), Analysis, Synthesis, and Perception of musical sounds (pp. 1–89). New York: Springer.

    Google Scholar 

  • Beurmann, A., & Schneider, A. (1995). Zur akustischen Untersuchung von Volksmusikinstrumenten. Studia instrumentorum musicae popularis (Vol. X, pp. 113–121). Stockholm: Musikmuseet.

    Google Scholar 

  • Beurmann, A., & Schneider, A. (2008). Acoustics of the harpsichord: a case study. In A. Schneider (Ed.), Systematic and Comparative Musicology: Concepts, methods, findings (pp. 241–263). P. Lang: Frankfurt/M.

    Google Scholar 

  • Beurmann, A., & Schneider, A. (2009). Acoustics and sound of the harpsichord: another study. In R. Bader (Ed.), Musical Acoustics, Neurocognition and Psychology of Music (pp. 57–72). Frankfurt/M: P. Lang.

    Google Scholar 

  • Beurmann, A., Schneider, A., & Lauer, E. (1998). Klanguntersuchungen an der Arp-Schnitger-Orgel zu St. Jacobi, Hamburg. Systematische Musikwissenschaft, 6, 151–187.

    Google Scholar 

  • Beyer, R. (1999). Sounds of our time. Two hundred years of acoustics. New York: Springer.

    Google Scholar 

  • Boersma, P. (1993). Accurate short-term Analysis of the fundamental frequency and the harmonic-to-noise ratio of a sampled sound. IFA Proceedings, 17, 97–110.

    Google Scholar 

  • Boersma, P., Weenink D. (2011). Praat. Doing Phonetics by Computer. Amsterdam: University of Amsterdam, Institute of Phonetic Sciences. (Praat version 5323).

    Google Scholar 

  • Bozkurt, B. (2008). An automatic Pitch analysis method for Turkish Maquam music. Journal of New Music Research, 37, 1–13.

    MathSciNet  Google Scholar 

  • Bozkurt, B., Yarman, O., Karaosmanoğlu, K., & Akkoş, C. (2009). Weighing diverse theoretical Models on Turkish Maquam music against pitch measurements: a comparison of peaks automatically derived from frequency histograms with proposed scale tones. Journal of New Music Research, 38, 45–70.

    Google Scholar 

  • Bregman, A. (1990). Auditory Scene Analysis. Cambridge: MIT Press.

    Google Scholar 

  • Brown, J. (2007). Fundamental frequency tracking and applications to musical signal analysis. In J. Beauchamp (Ed.), Analysis, Synthesis, and Perception of musical sounds (pp. 90–121). New York: Springer.

    Google Scholar 

  • Brown, J., & Puckette, M. (1993). A high resolution fundamental frequency determination based on phase changes of the Fourier transform. Journal of Acoustical Society of America, 94, 662–667.

    Google Scholar 

  • Cañadas Quesada, F. J., Ruiz Reyes, N., Vera Candeas, P., Carabias, J. J., & Maldonado, S. (2010). A multiple-F0 estimation approach based on Gaussian spectral modeling for polyphonic music transcription. Journal of New Music Research, 39, 93–107.

    Google Scholar 

  • Canguilhem, G. (1966/1994). L’Objet de l’histoire des sciences (= lecture, Montréal 1966). In G. Canguilhem (Ed.), Études d’histoire et de philosophie des sciences (pp. 9–23). 7e ed. Paris: Vrin 1994.

    Google Scholar 

  • Cannon, J., & Dostrovsky, S. (1982). The Evolution of Dynamics: Vibration theory from 1687 to 1742. New York: Springer.

    Google Scholar 

  • Cariani, P. (2004). A temporal Model for Pitch multiplicity and tonal Consonance. Proceedings of International Conference on Music Perception and Cognition (IMPC), Evanston, 310–314.

    Google Scholar 

  • Castellengo, M. (1999). Analysis of initial transients in flute like instruments. Acustica, 85, 387–400.

    Google Scholar 

  • Chladni, E. F. F. (1805/1830). Die Akustik. Leipzig: Breitkopf & Haertel (2nd ed. 1830).

    Google Scholar 

  • Chladni, E. F. F. (1817). Neue Beyträge zur Akustik. Leipzig: Breitkopf & Haertel.

    Google Scholar 

  • Cohen, H. F. (1984). Quantifying Music. The Science of music at the first stage of the scientific revolution, 1580–1650. Dordrecht, Boston: D. Reidel.

    Google Scholar 

  • Cohen, L. (1995). Time-Frequency analysis. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Dahlback, K. (1958). New Methods in vocal folk music research. Oslo: University Press.

    Google Scholar 

  • Dalmont, J. P., Gilbert, J., & Kergomard, J. (2000). Reed Instruments, from small to large amplitude periodic oscillations and the Helmholtz motion analogy. Acustica, 86, 671–684.

    Google Scholar 

  • de Boer, E. (1976). On the “Residue” and Auditory Pitch Perception. In W. D. Keidel & W. D. Neff (Eds.), Handbook of Sensory Physiology (pp. 479–583). Berlin: Springer.

    Google Scholar 

  • de Cheiveigné, A., & Kawahara, H. (2002). YIN, a fundamental frequency estimator for speech and music. Journal of the Acoustical Society of America, 111, 1917–1930.

    Google Scholar 

  • de Cheveigné, A. (2005). Pitch perception models. In Chr. Plack, A. Oxenham, R. Fay, A. Popper (Eds.). Pitch. Neural Coding and Perception (pp. 169–233). New York: Springer.

    Google Scholar 

  • DeFatta, D., Lucas, J., & Hodgkiss, W. (1988). Digital Signal Processing. A system design approach. New York: Wiley.

    Google Scholar 

  • Edison, T. (1888). The perfected Phonograph. The North American Review, 146(379), 641–650.

    Google Scholar 

  • Edskes, C., & Vogel, H. (2009). Arp Schnitger und sein Werk. Bremen: Hauschild.

    Google Scholar 

  • Ehret, G. (1997). The auditory midbrain, a “shunting yard” of acoustical information processing. In G. Ehret & R. Romand (Eds.), The Central Auditory System (pp. 259–316). Oxford: Oxford University Press.

    Google Scholar 

  • Elschek, O. (1979). Melographische Interpretationscharakteristika von Flötenmusik. Studia instr. mus. pop. VI (pp. 43–58), Stockholm: Musikhist. Museet.

    Google Scholar 

  • Elschek, O. (2006). Fujara. The Slovak Queen of European Flutes. Bratislava: Hudobné Centrum.

    Google Scholar 

  • Fant, G. (1952). The Heterodyne Filter. Göteborg/Stockholm: Elander/Lindstahl.

    Google Scholar 

  • Fant, G. (1960). Acoustic theory of speech production. With calculations based on x-ray studies of Russian articulations. The Hague: Mouton.

    Google Scholar 

  • Feld, S. (1990). Sound and Sentiment: Birds, weeping, poetics, and song in Kaluli expression (2nd ed.). Philadelpia: University of Pennsylvania Press.

    Google Scholar 

  • Feld, S., Kirgegaard, A. (2010). Entangled Complicities in the prehistory of ‘World Music’: Poul Rovsing Olsen and Jean Jenkins encounter Brian Eno and David Byrne in the Bush of Ghosts. Popular Musicology Online. www.popular-musicology-online.com/issues/04/feld.html. (retrieved 30th of August, 2012).

  • Filip, M. (1969). Envelope periodicity detection. Journal of the Acoustical Society of America, 45, 719–732.

    Google Scholar 

  • Filip, M. (1970). Frekvenčné merania a tónová sústava [Frequency measurement and tonal system] (pp. 50–85), Nové Cesty Hudbe, 2, Praha.

    Google Scholar 

  • Filip, M. (1978). Acoustic measurements as auxiliary methods in ethnomusicology. Musicologica Slovaca, 7, 77–87.

    Google Scholar 

  • Födermayr, F. (1971). Zur gesanglichen Stimmgebung in der außereuropäischen Musik (Vol. 2). Wien: Stiglmayr.

    Google Scholar 

  • Fricke, J. (1993). Die Wechselwirkung von Mensch und Musik im Zusammenspiel von Physik und Physiologie. In B. Enders & St. Hanheide (Eds.), Neue Musiktechnologie (pp. 169–196). London: Schott.

    Google Scholar 

  • Graf, W. (1972). Musikalische Klangforschung. Acta Musicologica, 44, 31–78.

    Google Scholar 

  • Graf, W. (1976). Zum Klang der Stainer-Geigen. In Festschrift Walter Senn zum 70. Geburtstag (pp. 98–117), hrsg. von E. Egg u.a., München: Katzbichler.

    Google Scholar 

  • Graf, W. (1980). Vergleichende Musikwissenschaft. Ausgewählte Aufsätze. Hrsg. von F. Födermayr. Stiglmayr: Wien-Föhrenau.

    Google Scholar 

  • Grützmacher, M. (1927). Eine neue Methode der Klanganalyse. Elektrische Nachrichtentechnik (ENT), 4(12), 533–545.

    Google Scholar 

  • Grützmacher, M., & Lottermoser, W. (1937). Über ein Verfahren zur trägheitsfreien Aufzeichnung von Melodiekurven. Akustische Zeitschrift, 2, 242–248.

    Google Scholar 

  • Hartmann, W. (1998). Signals, Sound, and Sensation. New York: AIP/Springer.

    Google Scholar 

  • Hekland, F. (2001). Automatic Music transcription using autoregressive frequency estimation. Project paper. Toulouse: ENSEEIHT.

    Google Scholar 

  • Helmholtz, H. (1863/1870/1896). Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik. Braunschweig: Vieweg (3rd ed. 1870, 5th ed. 1896).

    Google Scholar 

  • Helmholtz, H. von (1857/1896). Über die physiologischen Ursachen der musikalischen Harmonien (Vortrag, Bonn 1857). In H. von Helmholtz (Ed.), Vorträge und Reden (pp. 119–155). 4. Aufl. Braunschweig: Vieweg 1896, Bd 1.

    Google Scholar 

  • Hermann, L. (1889). Phonophotographische Untersuchungen. [Pflügers]. Archiv für die gesamte Physiologie, 45, 582–592.

    Google Scholar 

  • Hermann, L. (1891). Bemerkungen zur Vocalfrage. Archiv für die gesamte Physiologie, 48, 181–194.

    Google Scholar 

  • Hermann, L. (1893). Phonophotographische Untersuchungen. IV: Untersuchungen mittels des neuen Edison’schen Phonographen. Archiv für die gesamte Physiologie, 53, 1–51.

    Google Scholar 

  • Hermann, L. (1894). Phonophotographische Untersuchungen. VI. Nachtrag zur Untersuchung der Vocalcurven. (Nach Versuchen in Gemeinschaft mit Dr. F. Matthias und stud. med. Alfred Ehrhardt.). Archiv für die gesamte Physiologie, 58, 264–279.

    Google Scholar 

  • Hermann, L. (1911). Neue Beiträge zur Lehre von den Vokalen und ihrer Entstehung. Archiv für die gesamte Physiologie, 141, 1–62.

    Google Scholar 

  • Hermann, L. (und H. Hirschfeld) (1895). Weitere Untersuchungen über das Wesen der Vocale. Archiv für die gesamte Physiologie, 61, 169–209.

    Google Scholar 

  • Herrmann, E. (1908). Über die Klangfarbe einiger Orchesterinstrumente und ihre Analyse. Diss. Königsberg 1908. In Beiträge zur Physiologie und Pathologie. Festschrift zum 70. Geburtstag L. Hermann …gewidmet (pp. 59–105), hrsg. von O. Weiss, Stuttgart: Union Deutsche Verlagsges.

    Google Scholar 

  • Hesse, H. P. (1972). Die Wahrnehmung von Tonhöhe und Klangfarbe als Problem der Hörtheorie. Köln: Volk/Gerig.

    Google Scholar 

  • Ingle, V., & Proakis, J. (2000). Digital Signal Processing using MATLAB. Pacific Grove ets.: Brooks/Cole.

    Google Scholar 

  • Keidel, W. D. (Ed.). (1975). Physiologie des Gehörs. Akustische Informationsverarbeitung. Stuttgart: Thieme.

    Google Scholar 

  • Kergomard, J., Ollivier, S., & Gilbert, J. (2000). Calculation of the Spectrum of self-sustained oscillators using a variable truncation method: application to cylindrical reed instruments. Acustica, 86, 685–703.

    Google Scholar 

  • Klapuri, A. (2004). Automatic music transcription as we know it today. Journal of New Music Research, 33, 269–282.

    Google Scholar 

  • Klapuri, A., & Davy, M. (Eds.). (2006). Signal Processing Methods for music transcription. New York: Springer.

    Google Scholar 

  • Kreichgauer, A. (1932). Über Maßbestimmungen freier Intonationen. Berlin: Phil. Diss.

    Google Scholar 

  • Krueger, F. (1907). Beziehungen der experimentellen Phonetik zur Psychologie. Bericht über den II. Kongress für exp. Psychol. Würzburg 1906 (pp. 58–122). Leipzig: Barth.

    Google Scholar 

  • Küpfmüller, K. (1968). Die Systemtheorie der elektrischen Nachrichtenübertragung. 3. Aufl. Stuttgart: Hirzel.

    Google Scholar 

  • Lau, B., Bader, R., Schneider, A., & Wriggers, P. (2010). Finite-Element transient calculation of a bell struck by its clapper. In R. Bader, Chr. Neuhaus, & U. Morgenstern (Eds.), Concepts, Experiments, and Fieldwork: Studies in Systematic Musicology and Ethnomusicology (pp. 137–156). Frankfurt/M.: P. Lang.

    Google Scholar 

  • Licklider, J. C. (1951). A duplex theory of pitch perception. Experientia, 7, 128–134.

    Google Scholar 

  • Licklider, J. C. (1956). Auditory Frequency Analysis. In C. Cherry (Ed.), Information theory (pp. 253–268). London: Butterworth.

    Google Scholar 

  • Lottermoser, W. (1976/1977). Frequenzschwankungen bei musikalischen Klängen. Acustica, 36, 138–146.

    Google Scholar 

  • Marple, S. L. (1987). Digital Spectral Analysis. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • McAulay, R., Quatieri, T. (1986). Speech Analysis/Synthesis based on a sinusoidal representation. IEEE Transactions on Acoustics, Speech, and Signal Processing Vol. ASSP-34, 34(4), 744–754.

    Google Scholar 

  • Meddis, R., & O’Mard, L. (1997). A unitary Model of pitch perception. Journal of the Acoustical Society of America, 102, 1811–1820.

    Google Scholar 

  • Meddis, R., & O’Mard, L. (2006). Virtual pitch in a computational physiological model. Journal of the Acoustical Society of America, 120, 3861–3869.

    Google Scholar 

  • Meissner, G. (1907). Klangaufnahmen an Blasinstrumenten, eine Grundlage für das Verständnis der menschlichen Stimme. Nachgelassenes Manuscript …hrsg. durch Richard Wachsmuth. [Pflügers]. Archiv für die gesamte Physiologie, 116, 543–599.

    Google Scholar 

  • Mertens, P. H. (1975). Die Schumannschen Klangfarbengesetze und ihre Bedeutung für die Übertragung von Sprache und Musik. Frankfurt/M: Bochinsky.

    Google Scholar 

  • Mertins, A. (1996). Signaltheorie. Stuttgart: Teubner.

    MATH  Google Scholar 

  • Mertins, A. (1999). Signal Analysis. Chichester: Wiley.

    MATH  Google Scholar 

  • Metfessel, M. (1928). Phonophotography in Folk Music. American Negro songs in new notation. Chapel Hill: University of North Carolina Press.

    Google Scholar 

  • Meyer, E., & Guicking, D. (1974). Schwingungslehre. Braunschweig: Vieweg.

    Google Scholar 

  • Mores, R. (2010). Vowel quality in violin sounds. In R. Bader, Chr. Neuhaus, & U. Morgenstern (Eds.), Concepts, Experiments, and Fieldwork: Studies in Systematic Musicology and Ethnomusicology (pp. 113–135). Frankfurt/M.: P. Lang.

    Google Scholar 

  • Nagel, G. (2007). Sprengstoff- und Fusionsforschung an der Berliner Universität: Erich Schumann und das II. Physikalische Institut. In R. Karlsch & H. Petermann (Eds.), Für und Wider ‘Hitlers Bombe’. Studien zur Atomforschung in Deutschland (pp. 229–260). Münster: Waxmann.

    Google Scholar 

  • Nelken, I. (2002). Feature detection by the auditory cortex. In D. Oertel, R. Fay, & A. Popper (Eds.), Integrative Functions in the Mammalian auditory Pathway (pp. 358–416). New York: Springer.

    Google Scholar 

  • Neppert, J., & Pétursson, M. (1986). Elemente einer akustischen Phonetik (2nd ed.). Hamburg: Buske.

    Google Scholar 

  • Obata, J., & Kobayashi, R. (1937). A direct-reading pitch recorder and its application to music and speech. Journal of the Acoustical Society of America, 9, 156–161.

    Google Scholar 

  • Opelt, F. W. (1852). Allgemeine Theorie der Musik auf den Rhythmus der Klangwellenpulse gegründet. Leipzig: Barth.

    Google Scholar 

  • Owen, T. (1974). Applying the Melograph to “Parker’s Mood”. Selected Reports in Ethnomusicology (pp. 167–175), Vol. II, 1. Los Angeles: UCLA.

    Google Scholar 

  • Paiva, R. P., Mendes, T., & Cardoso, A. (2008). From Pitches to notes: creation and segmentation of pitch tracks for melody detection in polyphonic audio. Journal of New Music Research, 37, 185–205.

    Google Scholar 

  • Panconcelli-Calzia, G. (1941/1994). Geschichtszahlen der Phonetik. 3000 Jahre Phonetik. Hamburg: Hansischer Gildenverlag 1941; Repr. Amsterdam: Benjamins 1994.

    Google Scholar 

  • Pipping, H. (1890). Zur Klangfarbe der gesungenen Vocale. Zeitschrift für Biologie 27, 1ff., 433ff.

    Google Scholar 

  • Pipping, H. (1894). Über die Theorie der Vokale. Helsingfors: Soc. Litterariae Fennicae (=Acta Soc. Scient. Fenn. XX, no. 11).

    Google Scholar 

  • Potter, R., Kopp, G., & Green, H. (1947). Visible Speech. New York: van Nostrand.

    Google Scholar 

  • Randall, R. B. (1987). Frequency Analysis (3rd ed.). Naerum: Bruel & Kjaer.

    Google Scholar 

  • Reinecke, H. P. (2003). Hermann von Helmholtz, Carl Stumpf und die Folgen. Von der Akustik zur Tonpsychologie. Über ein Kapitel Wissenschaftsgeschichte in Berlin. In M. Kaiser-El-Safti & M. Ballod (Eds.), Musik und Sprache. Zur Phänomenologie von Carl Stumpf (pp. 185–197). Würzburg: Königshausen & Neumann.

    Google Scholar 

  • Reuter, C. (1995). Der Einschwingvorgang nichtperkussiver Musikinstrumente. Frankfurt/M: P. Lang.

    Google Scholar 

  • Reuter, C. (1996). Die auditive Diskrimination von Orchesterinstrumenten. Verschmelzung und und Heraushörbarkeit von Instrumentalklangfarben im Ensemblespiel. Frankfurt/M: P. Lang.

    Google Scholar 

  • Roads, C., Strawn, J., et al. (1996). The Computer Music Tutorial. Cambridge: MIT Press.

    Google Scholar 

  • Roads, C., Pope, S. T., Piccialli, A., & de Poli, G. (Eds.). (1997). Musical Signal Processing. Lisse etc.: Swets & Zeitlinger.

    Google Scholar 

  • Rodet, X., & Schwarz, D. (2007). Spectral Envelopes and additive + residual analysis/synthesis. In J. Beauchamp (Ed.), Analysis, Synthesis, and Perception of musical sounds (pp. 174–227). New York: Springer.

    Google Scholar 

  • Rösing, H. (1972). Die Bedeutung der Klangfarbe in traditioneller und elektronischer Musik. Eine sonagraphische Untersuchung. München: Katzbichler.

    Google Scholar 

  • Sauveur, J. (1701). Système général des intervalles des sons, et son application à tous les systèmes et à tous les instrumens de musique. Histoire de L'Académie Royale des Sciences. Année 1701, Mémoires de Mathematique & de Physique, 297–364.

    Google Scholar 

  • Schneider, A. (1986). Tonsystem und Intonation. Hamburger Jahrbuch für Musikwissenschaft, 9, 153–199.

    Google Scholar 

  • Schneider, A. (1987). Musik, Sound, Sprache, Schrift: Transkription und Notation in der Vergleichenden Musikwissenschaft und Musikethnologie. Zeitschrift für Semiotik, 9, 317–343.

    Google Scholar 

  • Schneider, A. (1997a). “Verschmelzung” Tonal Fusion, and Consonance: Carl Stumpf revisited. In M. Leman (Ed.), Music, Gestalt, and Computing. Studies in Cognitive and Systematic Musicology (pp. 117–143). Berlin: Springer.

    Google Scholar 

  • Schneider, A. (1997b). Tonhöhe–Skala–Klang. Akustische, tonometrische und psychoakustische Studien auf vergleichender Grundlage. Bonn: Orpheus-Verlag für syst. Musikwiss.

    Google Scholar 

  • Schneider, A. (1998). Klanganalysen bei Aerophonen der Volksmusik. In F. Födermary & L. Burlas (Eds.), Ethnologische, Historische und Systematische Musikwissenschaft. Oskár Elschek zum 65. Geburtstag (pp. 51–80). Bratislava: ASCO

    Google Scholar 

  • Schneider, A. (2000). Inharmonic Sounds: Implications as to «Pitch», «Timbre» and «Consonance». Journal of New Music Research, 29, 275–301.

    Google Scholar 

  • Schneider, A. (2001). Sound, Pitch, and Scale: from ‘tone measurements’ to sonological analysis in ethnomusicology. Ethnomusicology, 45, 489–519.

    Google Scholar 

  • Schneider, A. (2011). Music Theory: Speculation, Reasoning, Experience. A Perspective from Systematic Musicology. In T. Janz & J. Ph. Sprick (Eds.), Musiktheorie | Musikwissenschaft. Geschichte—Methoden—Perspektiven (pp. 53–97). New York: Olms.

    Google Scholar 

  • Schneider, A., & Frieler, L. (2009). Perception of harmonic and inharmonic sounds: results from ear models. In S. Ystad, R. Kronland-Martinet, & K. Jensen (Eds.), Computer Music Modeling and Retrieval. Genesis of meaning in sound and music (pp. 18–44). Berlin: Springer.

    Google Scholar 

  • Schneider, A., von Busch, R., & Schmidt, L. (2001). Klanganalysen an Arp Schnitger-Orgeln. In N. Ristow, W. Sandberger, & D. Schröder (Eds.), «Critica Musica.» Studien zum 17. und 18. Jahrhundert (pp. 247–270). Stuttgart: Metzler.

    Google Scholar 

  • Schumann, K. E. (1925). Akustik. Breslau: Hirt.

    Google Scholar 

  • Scripture, E. W. (1906). Research in Experimental Phonetics. The Study of Speech Curves. Washington, D.C.: Carnegie Institution.

    Google Scholar 

  • Scripture, E. W. (1927). Anwendung der graphischen Methode auf Sprache und Gesang. Leipzig: J. Barth.

    Google Scholar 

  • Seeger, C. (1951). An instantaneous music notator. Journal of the International Folk Music Council, 3, 103–106.

    Google Scholar 

  • Slawson, W. (1985). Sound Color. Berkeley: University of California Press.

    Google Scholar 

  • Smith, J. O. (2007). Introduction to digital filters with audio applications. Stanford: CCRMA (online book available at https://ccrma.stnford.edu/~jos/filters/).

  • Stern, W. (1902). Der Tonvariator. Zeitschrift für Psychologie, 30, 422–432.

    Google Scholar 

  • Stevens, S. S. (1934). The Volume and Intensity of Sounds. The American Journal of Psychology, 46, 397–408.

    Google Scholar 

  • Stumpf, C. (1890). Tonpsychologie. Bd II. Leipzig: J. Barth.

    Google Scholar 

  • Stumpf, C. (1898). Konsonanz und Dissonanz. Leipzig: J. Barth.

    Google Scholar 

  • Stumpf, C. (1926). Die Sprachlaute Experimentell-phonetische Untersuchungen nebst einem Anhang über Instrumentalklänge. Berlin: Springer.

    Google Scholar 

  • Sundberg, J. (1997). Die Wissenschaft von der Singstimme. Bonn: Orpheus-Verlag für syst. Musikwiss.

    Google Scholar 

  • Terhardt, E. (1998). Akustische Kommunikation. Berlin: Springer.

    Google Scholar 

  • Tjernlund, P., Sundberg, J., Fransson, F. (1972). Grundfrequenzmessungen an schwedischen Kernspaltflöten. Studia instr. mus. pop. II, Stockholm, (pp. 77–96).

    Google Scholar 

  • Tramo, M., Cariani, P., Delgutte, B., & Braida, L. (2001). Neurobiological Foundations for the theory of harmony in western tonal music. Annals of the New York Academy of Sciences, 930, 92–116.

    Google Scholar 

  • Trendelenburg, F., Thienhaus, E., & Franz, E. (1936). Klangeinsätze an der Orgel. Akustische Zeitschrift, 1, 59–76.

    Google Scholar 

  • Vierling, O. (1936). Der Formantbegriff. Annalen der Physik, 5, Folge, Bd 26, 219–232.

    Google Scholar 

  • Voigt, W. (1975). Untersuchungen zur Formantbildung in Klängen von Fagott und Dulzianen. Regensburg: Bosse.

    Google Scholar 

  • von Qvanten, E. (1875). Einige Bemerkungen zur Helmholtz’schen Vocallehre. [Poggendorfs]. Annalen der Physik, 230, 522–552.

    Google Scholar 

  • Weber, G. (1817/1824/1830). Versuch einer geordneten Theorie der Tonsetzkunst. Bd 1, Mainz: Schott (2nd ed. 1824, 3rd ed. 1830).

    Google Scholar 

  • Wiener, N. (1961). Cybernetics or control and communication in the animal and in the machine (2nd ed.). New York: MIT Press.

    MATH  Google Scholar 

  • Willis, R. (1830). On the vowel sounds, and on the reed organ-pipes. Transactions of the Cambridge Philosophical Society, 3, 229–268.

    Google Scholar 

  • Winckel, F. (1960). Phänomene des musikalischen Hörens. Berlin: Hesse.

    Google Scholar 

  • Zölzer, U. (Ed.). (2003). DAFX. Digital Audio Effects. Chichester: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albrecht Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schneider, A. (2013). Change and Continuity in Sound Analysis: A Review of Concepts in Regard to Musical Acoustics, Music Perception, and Transcription. In: Bader, R. (eds) Sound - Perception - Performance. Current Research in Systematic Musicology, vol 1. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00107-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00107-4_3

  • Published:

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00106-7

  • Online ISBN: 978-3-319-00107-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics