Skip to main content

From d-Bars to Antimatter- and Hyperclusters

  • Chapter
  • First Online:
Exciting Interdisciplinary Physics

Part of the book series: FIAS Interdisciplinary Science Series ((FIAS))

  • 1738 Accesses

Abstract

The Facility for Antiproton and Ion Research (FAIR) is going to be constructed within the next six years adjacent to the existing accelerator complex of the GSI Helmholtz Centre for Heavy Ion Research at Darmstadt/Germany, expanding the research goals and technical possibilities substantially. Providing a broad spectrum of unprecedented fore-front research at worldwide unique accelerator and experimental facilities, FAIR will open the way for a large variety of experiments in hadron, nuclear, atomic and plasma physics as well as applied sciences which will be briefly described in this article. As an example the article presents research efforts on strangeness at FAIR using heavy ion collisions, exotic nuclei from fragmentation and antiprotons to tackle various topics in this area. In particular the creation of hypernuclei as well as metastable exotic multi-hypernuclear objects (MEMOs) and anti-matter will be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In alphabetical order: Finland, France, Germany, India, Poland, Romania, Russia, Slovenia and Sweden

References

  1. H.H. Gutbrod et al. (eds.), FAIR Baseline Technical Report. ISBN 3-9811298-0-6, Nov 2006

    Google Scholar 

  2. W.F. Henning, FAIR: recent developments and status. Nucl. Phys. A 805, 502 (2008)

    Article  ADS  Google Scholar 

  3. H. Stöcker, FAIR: challenges overcome and still to be met, in Proceedings of EPAC08, MOYCGM01, Genoa, Italy, 2008

    Google Scholar 

  4. C. Sturm, B. Sharkov, H. Stöcker, 1,2,3. FAIR !. Nucl. Phys. A 834, 682c (2010)

    Article  ADS  Google Scholar 

  5. Green Paper of FAIR: The Modularized Start Version, www.gsi.de/documents/DOC-2009-Nov-124-1.pdf. Oct 2009

  6. Th. Stöhlker et al., Atomic physics with highly-charged ions at the future FAIR facility: a status report. Nucl. Inst. Meth. B 261, 234 (2007)

    Google Scholar 

  7. I.V. Lomonosov, N.A. Tahir, Prospects of high-energy density matter research at the future FAIR facility at Darmstadt. Nucl. Phys. News 16(1), 29 (2006)

    Article  Google Scholar 

  8. B. Friman, C. Höhne, J. Knoll, S. Leupold, J. Randrup, R. Rapp, P. Senger (eds.), in The CBM Physics Book. Lecture notes in physics, vol. 814, 2011

    Google Scholar 

  9. P. Senger et al., [CBM Collaboration], Compressed baryonic matter: experiments at GSI and FAIR. Phys. Part. Nucl. 39, 1055 (2008)

    Google Scholar 

  10. P. Senger et al., [CBM Collaboration], Probing dense baryonic matter. Prog. Part. Nucl. Phys. 62, 375 (2009)

    Article  ADS  Google Scholar 

  11. G. Agakishiev et al., [HADES Collaboration], The high-acceptance dielectron spectrometer HADES. Eur. Phys. J. A 41, 243 (2009)

    Google Scholar 

  12. J. Stroth et al., [HADES Collaboration], Di-electron emission from resonance matter. Prog. Part. Nucl. Phys. 62, 481 (2009)

    Google Scholar 

  13. I. Fröhlich for the HADES Collaboration, Future perspectives at SIS-100 with HADES-at-FAIR, arXiv:0906.0091 [nucl-ex]

    Google Scholar 

  14. P. Tlusty et al., [HADES Collaboration], Future experiments with HADES at FAIR. AIP Conf. Proc. 1322, 116 (2010)

    Google Scholar 

  15. R. Krücken et al., [NuSTAR Collaboration], Then nustar facility at FAIR. J. Phys. G 31, S1807 (2005)

    Google Scholar 

  16. B. Rubio, T. Nilsson, NuSTAR. Nucl. Phys. News 16, 9 (2006)

    Google Scholar 

  17. Physics Performance Report for PANDA: Strong Interaction Studies with Antiprotons. arXiv:0903.3905v1 [hep-ex]

    Google Scholar 

  18. K. Fohl et al., [PANDA Collaboration], The PANDA detector at the future FAIR laboratory. Eur. Phys. J. ST 162, 213 (2008)

    Google Scholar 

  19. J.S. Lange for the PANDA Collaboration, The PANDA experiment: hadron physics with antiprotons at FAIR. Int. J. Mod. Phys. A 24, 369 (2009)

    Google Scholar 

  20. W. Greiner, Int. J. Mod. Phys. E 5, 1 (1996)

    Article  ADS  Google Scholar 

  21. J. Adams et al., STAR Collaboration, Nucl. Phys. A 757, 102 (2005)

    Google Scholar 

  22. B. I. Abelev [STAR Collaboration], Science 328, 58 (2010)

    Google Scholar 

  23. H. Agakishiev et al. [STAR Collaboration], Nature 473, 353 (2011), (Erratum ibid. 475, 412 (2011))

    Google Scholar 

  24. H. Liu, Z. Xu, arXiv:nucl-ex/0610035

    Google Scholar 

  25. S.P. Ahlen, V.M. Balebanov et al., Nucl. Instrum. Meth. A 350, 351 (1994)

    Article  ADS  Google Scholar 

  26. STAR decadal plan 2011, www.bnl.gov/npp/docs/STAR_decadal_Plan_Final.pdf

  27. P. Koch, B. Müller, J. Rafelski, Phys. Rep. 142, 167 (1986)

    Article  ADS  Google Scholar 

  28. A.R. Bodmer, Phys. Rev. D 4, 1601 (1971)

    Article  ADS  Google Scholar 

  29. R.L. Jaffe, Phys. Rev. Lett. 38, 195 (1977) (Erratum ibid. 38, 617 (1977))

    Google Scholar 

  30. T. Goldman, K. Maltman, G.J. Stephenson Jr, K.E. Schmidt, F. Wang, Phys. Rev. Lett. 59, 627 (1987)

    Article  ADS  Google Scholar 

  31. J.T. Goldman et al., Mod. Phys. Lett. A 13, 59 (1998)

    Article  ADS  Google Scholar 

  32. B. Schwesinger, F.G. Scholtz, H.B. Geyer, Phys. Rev. D 51, 1228 (1995)

    Article  ADS  Google Scholar 

  33. I. Wetzorke, F. Karsch, Nucl. Phys. Proc. Suppl. 119, 278 (2003)

    Article  ADS  Google Scholar 

  34. S.R. Beane et al. [NPLQCD Collaboration], Phys. Rev. D 85, 0544511 (2012)

    Google Scholar 

  35. P. Braun-Munzinger, J. Stachel, J. Phys. G 21, L17 (1995)

    Article  ADS  Google Scholar 

  36. J.K. Ahn et al., Phys. Rev. Lett. 87, 132504 (2001)

    Article  ADS  Google Scholar 

  37. H. Takahashi et al., Phys. Rev. Lett. 87, 212502 (2001)

    Article  ADS  Google Scholar 

  38. A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stöcker, Phys. Lett. B 697, 203 (2011)

    Article  ADS  Google Scholar 

  39. S.T.A.R. Collaboration, Science 328, 58 (2010)

    Article  Google Scholar 

  40. S.T.A.R. Collaboration, Nature 473, 353 (2011)

    Article  ADS  Google Scholar 

  41. J. Schaffner, H. Stöcker, C. Greiner, Phys. Rev. C 46, 322 (1992)

    Article  ADS  Google Scholar 

  42. J. Schaffner, C.B. Dover, A. Gal, C. Greiner, H. Stöcker, Phys. Rev. Lett. 71, 1328 (1993)

    Article  ADS  Google Scholar 

  43. E.P. Gilson, R.L. Jaffe, Phys. Rev. Lett. 71, 332 (1993)

    Article  ADS  Google Scholar 

  44. J. Schaffner-Bielich, C. Greiner, A. Diener, H. Stöcker, Phys. Rev. C 55, 3038 (1997)

    Article  ADS  Google Scholar 

  45. J. Schaffner-Bielich, R. Mattiello, H. Sorge, Phys. Rev. Lett. 84, 4305 (2000)

    Article  ADS  Google Scholar 

  46. S. Ahmad et al., Phys. Lett. B 382, 35 (1996)

    Article  ADS  Google Scholar 

  47. A. Mischke et al., [NA49 Collaboration], J. Phys. G 28, 1761 (2002)

    Google Scholar 

  48. C. Alt et al., [NA49 Collaboration], Phys. Rev. C 78, 034918 (2008)

    Google Scholar 

  49. J. Steinheimer et al., to be published

    Google Scholar 

  50. J. Steinheimer, M. Mitrovskia, T. Schuster, H. Petersen, M. Bleicher, H. Stöcker, Phys. Lett. B 676, 126 (2009)

    Article  ADS  Google Scholar 

  51. F. Becattini, U.W. Heinz, Z. Phys. C 76, 269 (1997) (Erratum ibid. C 76, 578 (1997))

    Google Scholar 

  52. J. Cleymans, K. Redlich, E. Suhonen, Z. Phys. C 51, 137 (1991)

    Google Scholar 

  53. A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167 (2006)

    Article  ADS  Google Scholar 

  54. J. Steinheimer, M. Bleicher, Phys. Rev. C 84, 024905 (2011)

    Article  ADS  Google Scholar 

  55. P. Rau, J. Steinheimer, B. Betz, H. Petersen, M. Bleicher, H. Stöcker, arXiv:1003.1232 [nucl-th]

    Google Scholar 

  56. P. Rau, J. Steinheimer, S. Schramm, H. Stöcker, Phys. Rev. C 85, 025204 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by HGS-HIRe and the Hessian LOEWE initiative through the Helmholtz International center for FAIR (HIC for FAIR). The computational resources were provided by the Frankfurt Center for Scientific Computing (CSC). J. S. acknowledges a Feodor Lynen fellowship of the Alexander von Humboldt foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Steinheimer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Steinheimer, J., Xu, Z., Rau, P., Sturm, C., Stöcker, H. (2013). From d-Bars to Antimatter- and Hyperclusters. In: Greiner, W. (eds) Exciting Interdisciplinary Physics. FIAS Interdisciplinary Science Series. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00047-3_24

Download citation

Publish with us

Policies and ethics