Skip to main content

Ultrafast Nonlinear Fibre Optics and Supercontinuum Generation

  • Chapter
  • First Online:
Ultrafast Nonlinear Optics

Part of the book series: Scottish Graduate Series ((SGS))

Abstract

This chapter presents a concise overview of nonlinear fibre optics, focusing particularly on the physics of supercontinuum generation in optical fibre for different regimes of pulse duration and for propagation in dispersion varying fibre. Soliton dynamics and their influence are emphasized, and basic numerical code is provided allowing higher-order soliton effects to be studied within a nonlinear Schrodinger equation model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.P. Agrawal, Nonlinear Fiber Optics, 4th edn. (Academic, San Diego, 2007)

    Google Scholar 

  2. P.S.J. Russell, Photonic-crystal fibers. J. Lightwave Technol. 24, 4729–4749 (2006)

    Article  ADS  Google Scholar 

  3. J.M. Dudley, J.R. Taylor, Ten years of nonlinear optics in photonic crystal fibre. Nat. Photonics 3, 85–90 (2009)

    Article  ADS  Google Scholar 

  4. J.K. Ranka, R.S. Windeler, A.J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000)

    Article  ADS  Google Scholar 

  5. J.M. Dudley, L. Provino, N. Grossard, H. Maillotte, R.S. Windeler, B.J. Eggleton, S. Coen, Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping. J. Opt. Soc. Am. B 19, 765–771 (2002)

    Article  ADS  Google Scholar 

  6. J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006)

    Article  ADS  Google Scholar 

  7. G. Genty, P. Kinsler, B. Kibler, J.M. Dudley, Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides. Opt. Express 15, 5382–5387 (2007)

    Article  ADS  Google Scholar 

  8. E.M. Dianov, A.Y. Karasik, P.V. Mamyshev, A.M. Prokhorov, V.N. Serkin, M.F. Stel’makh, A.A. Fomichev, Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers. JETP Lett. 41, 294–297 (1985)

    ADS  Google Scholar 

  9. C.M. Chen, P.L. Kelley, Nonlinear pulse compression in optical fibers: scaling laws and numerical analysis. J. Opt. Soc. Am. B 19, 1961–1967 (2002)

    Article  ADS  Google Scholar 

  10. J.M. Dudley, G. Genty, F. Dias, B. Kibler, N. Akhmediev, Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation. Opt. Express 17, 21497–21508 (2009)

    Article  ADS  Google Scholar 

  11. J.M. Dudley, S. Coen, Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. Opt. Lett. 27, 1180–1182 (2002)

    Article  ADS  Google Scholar 

  12. K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, R.S. Windeler, Fundamental noise limitations to supercontinuum generation in microstructure fiber. Phys. Rev. Lett. 90, 113904 (2003)

    Article  ADS  Google Scholar 

  13. D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Optical rogue waves. Nature 450, 1054–1057 (2007)

    Article  ADS  Google Scholar 

  14. T. Morioka, K. Mori, M. Saruwatari, More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres. Electron. Lett. 29, 862–864 (1993)

    Article  Google Scholar 

  15. K.R. Tamura, H. Kuhota, M. Nakazawa, Fundamentals of stable continuum generation at high repetition rates. IEEE J. Quantum Electron 36, 773–779 (2000)

    Article  ADS  Google Scholar 

  16. K. Mori, H. Takara, S. Kawanishi, Analysis and design of supercontinuum pulse generation in a single-mode optical fiber. J. Opt. Soc. Am. B 18, 1780–1792 (2001)

    Article  ADS  Google Scholar 

  17. G. Genty, S. Coen, J.M. Dudley, Fiber supercontinuum sources (Invited). J. Opt. Soc. Am. B 24, 1771–1785 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Dudley .

Editor information

Editors and Affiliations

Appendix

Appendix

This MATLAB code using the split-step Fourier technique is a very simple implementation to show the correspondence between the description in the text and Fig. 8.1 concerning the basic soliton solutions of the NLSE.

% - - - - - - - - - - - - - - - - - - - - WARNING- - - - - - - - - - - - - - - - - - - - - - - - -

% This code is written in simple dimensional form with no

% effort to be particularly robust numerically.

% Higher order effects are neglected with this implementation

clear,close all

lambda0 = 850e-9;     % input wavelength [m]

c = 299792458;        % speed of light [m/s]

F0 = c/lambda0;

% Time and Frequency Arrays

Npts = 256;

Tmax = 0.5e-12;

dT = 2*Tmax/(Npts-1);

TT = [−Npts/2:(Npts/2)-1]*dT;       % [ps]

FF = [−Npts/2:(Npts/2)-1] ./(2*Tmax);   % [THz]

WW = 2*pi*FF;

% Fibre parameters

beta2 = −1.275e-026;

gamma = 0.10;           %nonlinear length

% Soliton order and other parameters

N = 1;

T0 = 30e-15;             %nonlinear length

P0 = N^2*abs(beta2)/(T0^2*gamma);   %nonlinear length

% Length scales

L_D = T0^2/abs(beta2);  %dispersion length

L_NL = 1/(gamma*P0);    %nonlinear length

L_sol = pi/2*L_D;

% Input pulse

A0 = sqrt(P0)*sech(TT/T0);

% - - - - - - - - - - - - - - - - - - - - - Propagation - - - - - - - - - - - - - - - - - - - - - - -

Nz = 1,000;    % number of steps

Lz = 2*L_sol;   % propagation length

dz = Lz/Nz             % steps length

Nplots = 11;   % number of plots

% Operators

D_op = beta2/2*WW.^2*dz;

N_op = gamma*dz;

sel = round(Nz/(Nplots-1));

pik = linspace(0,Lz,Nplots)\( \hbox{quotesingle} \);

Ip = zeros(Nplots,Npts);

Ip_TF = zeros(Nplots,Npts);

Ip(1,:) = abs(A0).^2;

Ip_TF(1,:) = abs(fftshift(ifft(A0))).^2;

disp([\( \hbox{quotesingle} \)Courbe No. 1 de \( \hbox{quotesingle} \) num2str(Nplots)])

A1 = A0;

for ii = 2:Nz

  • A_TF = fftshift(ifft(fftshift(A1))).*exp(i*D_op);

    •  A1 = fftshift(fft(fftshift(A_TF)));

    •  A1 = A1.*exp(i*N_op*abs(A1).^2);

  •  if (ii/sel) == round(ii/sel)

    •  disp([\( \hbox{quotesingle} \)Courbe No. \( \hbox{quotesingle} \) num2str(1 + ii/sel) \( \hbox{quotesingle} \) de \( \hbox{quotesingle} \) num2str(Nplots)])

    •  Ip(1 + (ii/sel),:) = abs(A1).^2;

    •  Ip_TF(1 + (ii/sel),:) = abs(A_TF).^2;

  •  end

end

% - - - - - - - - - - - - - - - - - - - - - - Display - - - - - - - - - - - - - - - - - - - - - - - - -

figure(1)

a = waterfall(1e-12*FF,pik/L_sol,Ip_TF);

xl = xlabel(\( \hbox{quotesingle} \)Frequency(THz)\( \hbox{quotesingle} \)),set(xl,\( \hbox{quotesingle} \)Rotation\( \hbox{quotesingle} \),32,\( \hbox{quotesingle} \)fontsize\( \hbox{quotesingle} \),16)

yl = ylabel(\( \hbox{quotesingle} \)Distance z/L_{sol}\( \hbox{quotesingle} \)),set(yl,\( \hbox{quotesingle} \)Rotation\( \hbox{quotesingle} \),-30,\( \hbox{quotesingle} \)fontsize\( \hbox{quotesingle} \),16)

zl = zlabel(\( \hbox{quotesingle} \)Spectrum (arb.)\( \hbox{quotesingle} \),\( \hbox{quotesingle} \)fontsize\( \hbox{quotesingle} \),16)

set(gcf,\( \hbox{quotesingle} \)colormap\( \hbox{quotesingle} \),[0 0 0])

set(gca,\( \hbox{quotesingle} \)Xgrid\( \hbox{quotesingle} \),\( \hbox{quotesingle} \)off\( \hbox{quotesingle} \),\( \hbox{quotesingle} \)Ygrid\( \hbox{quotesingle} \),\( \hbox{quotesingle} \)off\( \hbox{quotesingle} \),\( \hbox{quotesingle} \)Zgrid\( \hbox{quotesingle} \),\( \hbox{quotesingle} \)off\( \hbox{quotesingle} \),\( \hbox{quotesingle} \)fontsize\( \hbox{quotesingle} \),16, …

\( \hbox{quotesingle} \)Linewidth\( \hbox{quotesingle} \),1)

view(135,50)

axis([−150 150 0 2 0 max(max(Ip_TF))])

figure(2)

b = waterfall(1e12*TT,pik/L_sol,Ip);

xl = xlabel(\( \hbox{quotesingle} \)Time (ps)\( \hbox{quotesingle} \)),set(xl,\( \hbox{quotesingle} \)Rotation\( \hbox{quotesingle} \),32,\( \hbox{quotesingle} \)fontsize\( \hbox{quotesingle} \),16)

yl = ylabel(\( \hbox{quotesingle} \)Distance z/L_{sol}\( \hbox{quotesingle} \)),set(yl,\( \hbox{quotesingle} \)Rotation\( \hbox{quotesingle} \),-30,\( \hbox{quotesingle} \)fontsize\( \hbox{quotesingle} \),16)

zl = zlabel(\( \hbox{quotesingle} \)Intensity (W)\( \hbox{quotesingle} \),\( \hbox{quotesingle} \)fontsize\( \hbox{quotesingle} \),16)

set(gcf,\( \hbox{quotesingle} \)colormap\( \hbox{quotesingle} \),[0 0 0])

set(gca,\( \hbox{quotesingle} \)Xgrid\( \hbox{quotesingle} \),\( \hbox{quotesingle} \)off\( \hbox{quotesingle} \),\( \hbox{quotesingle} \)Ygrid\( \hbox{quotesingle} \),\( \hbox{quotesingle} \)off\( \hbox{quotesingle} \),\( \hbox{quotesingle} \)Zgrid\( \hbox{quotesingle} \),\( \hbox{quotesingle} \)off\( \hbox{quotesingle} \),\( \hbox{quotesingle} \)fontsize\( \hbox{quotesingle} \),16, …

\( \hbox{quotesingle} \)Linewidth\( \hbox{quotesingle} \),1)

view(135,50)

axis([−0.5 0.5 0 2 0 max(max(Ip))])

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dudley, J.M., Cherif, R., Coen, S., Genty, G. (2013). Ultrafast Nonlinear Fibre Optics and Supercontinuum Generation. In: Thomson, R., Leburn, C., Reid, D. (eds) Ultrafast Nonlinear Optics. Scottish Graduate Series. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00017-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00017-6_8

  • Published:

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00016-9

  • Online ISBN: 978-3-319-00017-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics