Skip to main content

Advances in Solid-State Ultrafast Laser Oscillators

  • Chapter
  • First Online:
Ultrafast Nonlinear Optics

Part of the book series: Scottish Graduate Series ((SGS))

  • 4254 Accesses

Abstract

This chapter discusses the fundamentals of modelocking and dispersion control and concentrates on the specific technology of semiconductor saturable absorbers and their implementation in modelocked lasers. The end of the chapter reviews a selection of representative modern ultrafast lasers, which serve as examples of how the techniques discussed in the preceding sections may be implemented in real systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.P. Ippen, C.V. Shank, A. Dienes, Passive modelocking of the CW dye laser. Appl. Phys. Lett. 21, 348–350 (1972)

    Article  ADS  Google Scholar 

  2. U. Keller, D.A.B. Miller, G.D. Boyd, T.H. Chiu, J.F. Ferguson, M.T. Asom, Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber. Opt. Lett. 17, 505 (1992)

    Article  ADS  Google Scholar 

  3. D.E. Spence, P.N. Kean, W. Sibbett, 60-femtosecond pulse generation from a self-mode-locked Ti-sapphire laser. Opt. Lett. 16, 42–44 (1991)

    Article  ADS  Google Scholar 

  4. K. Tamura, L.E. Nelson, H.A. Haus, E.P. Ippen, Soliton versus nonsoliton operation of fiber ring lasers. App. Phys. Lett. 64, 149–151 (1994)

    Article  ADS  Google Scholar 

  5. K.J. Blow, D. Wood, Mode-locked lasers with nonlinear external cavities. J. Opt. Soc. Am. B 5, 629 (1988)

    Article  ADS  Google Scholar 

  6. P.N. Kean, X. Zhu, D.W. Crust, R.S. Grant, N. Langford, W. Sibbett, Enhanced modelocking of color-center lasers. Opt. Lett. 14, 39–41 (1989)

    Article  ADS  Google Scholar 

  7. X. Zhu, P.N. Kean, W. Sibbett, Coupled-cavity modelocking of a KCl:Tl laser using an erbium-doped optical fiber. Opt. Lett. 14, 1192–1194 (1989)

    Article  ADS  Google Scholar 

  8. J. Mark, L.Y. Liu, K.L. Hall, H.A. Haus, E.P. Ippen, Femtosecond pulse generation in a laser with a nonlinear external resonator. Opt. Lett. 14, 48–50 (1989)

    Article  ADS  Google Scholar 

  9. F. Ouellette, M. Piché, Pulse shaping and passive mode-locking with a nonlinear Michelson interferometer. Opt. Comm. 60, 99–103 (1986)

    Article  ADS  Google Scholar 

  10. S.Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Ultrafast fiber pulsed lasers incorporating carbon nanotubes. IEEE J. Sel. Top. Quantum. Electron. 10, 137–146 (2004)

    Article  Google Scholar 

  11. R.L. Fork, C.H. Cruz, P.C. Becker, C.V. Shank, Compression of optical pulses to six femtoseconds by using cubic phase compensation. Opt. Lett. 12, 483–485 (1987)

    Article  ADS  Google Scholar 

  12. B.E. Lemoff, C.P.J. Barty, Cubic-phase-free dispersion compensation in solid-state ultrashort-pulse lasers. Opt. Lett. 18, 57–59 (1993)

    Article  ADS  Google Scholar 

  13. R.E. Sherriff, Analytic expressions for group-delay dispersion and cubic dispersion on arbitrary prism sequences. J. Opt. Soc. Am. B 15, 1224–1230 (1998)

    Article  ADS  Google Scholar 

  14. E.B. Treacy, Compression of picosecond light pulses. Phys. Lett. 28a, 34–35 (1968)

    ADS  Google Scholar 

  15. E.B. Treacy, Pulse compression with diffraction gratings. IEEE J. Quantum. Electron. 5, 454–458 (1969)

    Article  ADS  Google Scholar 

  16. M. Yamashita, M. Ishikawa, K. Torizuka, T. Sato, Femtosecond-pulse laser chirp compensated by cavity-mirror dispersion. Opt. Lett. 11, 504 (1986)

    Article  ADS  Google Scholar 

  17. R. Szipocs, K. Ferencz, C. Spielmann, F. Krausz, Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Opt. Lett. 19, 201 (1994)

    Article  ADS  Google Scholar 

  18. U. Morgner, F.X. Kärtner, T.R. Schibli, P. Wagenblast, J.G. Fujimoto, E.P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. Lederer, A. Boiko, B. Luther-Davies, Ultrabroadband double-chirped mirror pairs covering one octave of bandwidth, in Conference on Lasers and Electro-Optics (CLEO), 39, OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, DC, 2000), paper CThE 5

    Google Scholar 

  19. F. Gires, P. Tournois, Interferometre utilisable pour la compression d’impulsions lumineuses modulees en frequence. C. R. Acad. Sci. Paris 258, 6112 (1964)

    Google Scholar 

  20. A. Isomäki, O.G. Okhotnikov, Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber. Opt. Express 14, 9238–9243 (2006)

    Article  ADS  Google Scholar 

  21. J.E. Sharping, M.A. Foster, A.L. Gaeta, J. Lasri, O. Lyngnes, K. Vogel, Octave-spanning, high-power microstructure-fiber-based optical parametric oscillators. Opt. Express 15, 1474–1479 (2007)

    Article  ADS  Google Scholar 

  22. For details on the split-step Fourier method see, for example, G.P. Agrawal, Nonlinear Fiber Optics, 2nd edn. (Academic, San Diego, 1995)

    Google Scholar 

  23. F.Ö. Ilday, J.R. Buckley, W.G. Clark, F.W. Wise, Self-similar evolution of parabolic pulses in a laser. Phys. Rev. Lett. 92, 213902 (2004)

    Article  ADS  Google Scholar 

  24. H.A. Haus, A theory of fast saturable absorber modelocking. J. Appl. Phys. 46, 3049 (1975)

    Article  ADS  Google Scholar 

  25. F.X. Kärtner, L.R. Brovelli, D. Kopf, M. Kamp, I.G. Calasso, U. Keller, Control of solid-state laser dynamics by semiconductor devices. Opt. Eng. 34, 2024 (1995)

    Article  ADS  Google Scholar 

  26. H.A. Haus, J.G. Fujimoto, E.P. Ippen, Analytic theory of additive pulse and Kerr lens mode-locking. IEEE J. Quantum Electron. 28, 2086–2096 (1992)

    Article  ADS  Google Scholar 

  27. H.A. Haus, K. Tamura, L.E. Nelson, E.P. Ippen, Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment. IEEE J. Quantum Electron. 31, 591 (1995)

    Article  ADS  Google Scholar 

  28. F.X. Kärtner, U. Keller, Stabilization of soliton-like pulses with a slow saturable absorber. Opt. Lett. 20, 16 (1995)

    Article  ADS  Google Scholar 

  29. W.H. Renninger, A. Chong, F.W. Wise, Dissipative solitons in normal-dispersion fiber lasers. Phys. Rev. A 77, 023814 (2008)

    Article  ADS  Google Scholar 

  30. M. DiDomenico, J.E. Geusic, H.M. Marcos, R.G. Smith, Generation of ultrashort optical pulses by modelocking the YAIG: Nd laser. Appl. Phys. Lett. 8, 180–183 (1966)

    Article  ADS  Google Scholar 

  31. H.W. Mocker, R.J. Collins, Mode competition and self-modelocking effects in a Q-switched ruby laser. Appl. Phys. Lett. 7, 270–273 (1965)

    Article  ADS  Google Scholar 

  32. A.J. DeMaria, D.A. Stetser, H. Heynau, Self mode-locking of lasers with saturable absorbers. Appl. Phys. Lett. 8, 174–176 (1966)

    Article  ADS  Google Scholar 

  33. H. Statz, C.L. Tang, Phase locking of modes in lasers. J. Appl. Phys. 36, 3923–3927 (1965)

    Article  ADS  Google Scholar 

  34. K. Wundke, S. Potting, J. Auxier, A. Schulzgen, N. Peyghambarian, N.F. Borrelli, PbS quantum-dot-doped glasses for ultrashort-pulse generation. Appl. Phys. Lett. 76, 10 (2000)

    Article  ADS  Google Scholar 

  35. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, S.Y. Set, Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers. Opt. Lett. 29, 1581 (2004)

    Article  ADS  Google Scholar 

  36. R. Paschotta, U. Keller, Passive modelocking with slow saturable absorbers. Appl. Phys. B 73, 653 (2001)

    Article  ADS  Google Scholar 

  37. G.H.C. New, Pulse evolution in mode-locked quasi-continuous lasers. IEEE J. Quantum Electron. 10, 115 (1974)

    Article  ADS  Google Scholar 

  38. O. Svelto, Principles of Lasers, 4th edn. (Plenum Press, New York, 1998)

    Book  Google Scholar 

  39. F.X. Kärtner, I.D. Jung, U. Keller, Soliton mode-locking with saturable absorbers. J. Sel. Top. in Quantum Electron. 2, 540 (1996)

    Article  Google Scholar 

  40. C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, U. Keller, Q-switching stability limits of continuous-wave passive modelocking. J. Opt. Soc. Am. B 16, 46 (1999)

    Article  ADS  Google Scholar 

  41. U. Keller, K.J. Weingarten, F.X. Kärtner, D. Kopf, B. Braun, I.D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. Aus der Au, Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron. 2, 435 (1996)

    Article  Google Scholar 

  42. U. Keller, W.H. Knox, H. Roskos, Coupled-cavity resonant passive mode-locked Ti:sapphire laser. Opt. Lett. 23, 1377–1379 (1990)

    Article  ADS  Google Scholar 

  43. P. Borri, S. Schneider, W. Langbein, U. Woggon, A.E. Zhukov, V.M. Ustinov, N.N. Ledentsov, Z.I. Alferov, D. Ouyang, D. Bimberg, Ultrafast carrier dynamics and dephasing in InAs quantum-dot amplifiers emitting near 1.3-μm-wavelength at room temperature. Appl. Phys. Lett. 79, 2633 (2001)

    Article  ADS  Google Scholar 

  44. O. Qasaimeh, W.-D. Zhou, J. Phillips, S. Krishna, P. Bhattacharya, M. Dutta, Bistability and self-pulsation in quantum-dot lasers with intracavity quantum-dot saturable absorbers. Appl. Phys. Lett. 74, 1654 (1999)

    Article  ADS  Google Scholar 

  45. A. Garnache, S. Hoogland, A.C. Tropper, J.M. Gerard, V. Thiery-Mieg, J.S. Roberts, Pico-second passively modelocked surface-emitting laser with self-assembled semiconductor quantum dot absorber, in Proceedings of CLEO/Europe-EQEC, Post–deadline Paper (2001)

    Google Scholar 

  46. E.U. Rafailov, S.J. White, A.A. Lagatsky, A. Miller, W. Sibbett, D.A. Livshits, A.E. Zhukov, V.M. Ustinov, Fast quantum-dot saturable absorber for passive mode-locking of solid-state lasers. IEEE Photonics Technol. Lett. 16, 2439 (2004)

    Article  ADS  Google Scholar 

  47. M.P. Lumb, E. Clarke, E. Harbord, P. Spencer, R. Murray, F. Masia, P. Borri, W. Langbein, C.G. Leburn, C. Jappy, N.K. Metzger, C.T.A. Brown, W. Sibbett, Ultrafast absorption recovery dynamics of 1300 nm quantum dot saturable absorber mirrors. Appl. Phys. Lett. 95, 041101 (2009)

    Article  ADS  Google Scholar 

  48. A.A. Lagatsky, C.G. Leburn, C.T.A. Brown, W. Sibbett, S.A. Zolotovskaya, E.U. Rafailov, Ultrashort-pulse lasers passively modelocked by quantum-dot-based saturable absorbers. Prog. Quantum Elecron. 34, 1–45 (2010)

    Article  ADS  Google Scholar 

  49. S. Tsuda, W.H. Knox, S.T. Cundiff, W.Y. Jan, J.E. Cunningham, Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors. IEEE J. Sel. Top. Quantum Electron. 2, 454–464 (1996)

    Article  Google Scholar 

  50. B. Craig, A. Krueger, Saturable Bragg reflectors simplify modelocking. Laser Focus World 36, 227–228 (2000)

    Google Scholar 

  51. P.T. Guerreiro, S. Ten, E. Slobodchikov, Y.M. Kim, J.C. Woo, N. Peyghambarian, Self-starting mode-locked Cr:forsterite laser with semiconductor saturable Bragg reflector. Opt. Comm. 136, 27–30 (1997)

    Article  ADS  Google Scholar 

  52. H.D. Sun, G.J. Valentine, R. Macaluso, S. Calvez, D. Burns, M.D. Dawson, T. Jouhti, M. Pessa, Low-loss 1.3-μm GaInNAs saturable Bragg reflector for high- power picosecond neodymium lasers. Opt. Lett. 27, 2124–2126 (2002)

    Article  ADS  Google Scholar 

  53. O.G. Okhotnikov, T. Jouhti, J. Konttinen, S. Karirinne, M. Pessa, 1.5-μm monolithic GaInNAs semiconductor saturable-absorber modelocking of an erbium fiber laser. Opt. Lett. 28, 364–366 (2003)

    Article  ADS  Google Scholar 

  54. V. Liverini, S. Schon, R. Grange, M. Haiml, S.C. Zeller, U. Keller, Low- loss GaInNAs saturable absorber modelocking a 1.3 μm solid-state laser. Appl. Phys. Lett. 84, 4002–4004 (2004)

    Article  ADS  Google Scholar 

  55. Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, Self-starting mode-locked femtosecond forsterite laser with a semiconductor saturable-absorber mirror. Opt. Lett. 22, 1006–1008 (1997)

    Article  ADS  Google Scholar 

  56. Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, H. Takahashi, Broadband semiconductor saturable-absorber mirror for a self- starting mode-locked Cr:forsterite laser. Opt. Lett. 23, 1465–1467 (1998)

    Article  ADS  Google Scholar 

  57. A. McWilliam, A.A. Lagatsky, C.G. Leburn, P. Fischer, C.T.A. Brown, G.J. Valentine, A.J. Kemp, S. Calvez, D. Burns, M.D. Dawson, M. Pessa, W. Sibbett, Low-loss GaInNAs saturable Bragg reflector for mode-locking of a femtosecond Cr:forsterite-laser. IEEE Photon. Technol. Lett. 17, 2292–2294 (2005)

    Article  ADS  Google Scholar 

  58. T. Südmeyer, S.V. Marchese, S. Hashimoto, C.R.E. Baer, G. Gingras, B. Witzel, U. Keller, Femtosecond laser oscillators for high-field science. Nat. Photon. 2, 599 (2008)

    Article  Google Scholar 

  59. S.V. Marchese, C.R.E. Baer, A.G. Engqvist, S. Hashimoto, D.J.H.C. Maas, M. Golling, T. Südmeyer, U. Keller, Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level. Opt. Express 16, 6397 (2008)

    Article  ADS  Google Scholar 

  60. J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D.H. Sutter, T. Dekorsy, Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry. Opt. Express 16, 20530 (2008)

    Article  ADS  Google Scholar 

  61. C.R.E. Baer, C. Kränkel, C.J. Saraceno, O.H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, U. Keller, Femtosecond thin-disk laser with 141 W of average power. Opt. Lett. 35, 2302–2304 (2010)

    Article  ADS  Google Scholar 

  62. L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K.J. Weingarten, U. Keller, Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz. IEEE J. Quantum Electron. 38, 1331 (2002)

    Article  ADS  Google Scholar 

  63. A.E.H. Oehler, T. Südmeyer, K.J. Weingarten, U. Keller, 100 GHz passively mode-locked Er:Yb:glass laser at 1.5 μm with 1.6-ps pulses. Opt. Express 16, 21930 (2008)

    Article  ADS  Google Scholar 

  64. A. Oehler, M. Stumpf, S. Pekarek, T. Südmeyer, K. Weingarten, U. Keller, Picosecond diode-pumped 1.5 μm Er,Yb:glass lasers operating at 10–100 GHz repetition rate. Appl. Phys. B 99, 53 (2010)

    Article  ADS  Google Scholar 

  65. A. Bartels, Passively mode-locked 10GHz femtosecond Ti:sapphire laser. Opt. Lett. 33, 1905–1907 (2008)

    Article  ADS  Google Scholar 

  66. C.G. Leburn, A.A. Lagatsky, C.T.A. Brown, W. Sibbett, Femtosecond Cr4+:YAG laser with 4 GHz pulse repetition rate. Electron. Lett. 40, 805–806 (2004)

    Article  Google Scholar 

  67. A.J. Kemp, B. Stormont, B. Agate, C.T.A. Brown, U. Keller, W. Sibbet, Gigahertz repetition-rate from directly diode-pumped femtosecond Cr:LiSAF laser. Electron. Lett. 37, 1457–1458 (2001)

    Article  Google Scholar 

  68. D. Li, U. Demirbas, J.R. Birge, G.S. Petrich, L.A. Kolodziejski, A. Sennaroglu, F.X. Kärtner, J.G. Fujimoto, Diode-pumped passively mode-locked GHz femtosecond Cr:LiSAF laser with kW peak power. Opt. Lett. 35, 1446–1448 (2010)

    Article  ADS  Google Scholar 

  69. P. Wasylczyck, P. Wnuk, C. Radzewicz, Passively mode-locked, diode-pumped Yb:KYW femtosecond oscillator with a 1 GHz repetition rate. Opt. Express 17, 5630–5635 (2009)

    Article  ADS  Google Scholar 

  70. S. Pekarek, C. Fiebig, M.C. Stumpf, A.E.H. Oehler, K. Paschke, G. Erbert, T. Südmeyer, U. Keller, Diode-pumped gigahertz femtosecond Yb:KGW laser with a peak power of 3.9kW. Opt. Express 18, 16320–16326 (2010)

    Article  ADS  Google Scholar 

  71. T.-Z. Liu, F.X. Kärtner, J.G. Fujimoto, C.-K. Sun, Multiplying the repetition-rate of passively modelocked femtosecond lasers by an intra-cavity flat surface with low reflectivity. Opt. Lett. 30, 439–441 (2005)

    Article  ADS  Google Scholar 

  72. M.P. Lumb, P.N. Stavrinou, E.M. Clarke, R. Murray, C.G. Leburn, C. Jappy, N.K. Metzger, C.T.A. Brown, W. Sibbett, Dispersionless saturable absorber mirrors with large modulation depths and low saturation fluences. Appl. Phys. B 97, 53–60 (2009)

    Article  ADS  Google Scholar 

  73. C.G. Leburn, W. Lu, S. Vetter, M.D. Dawson, C.T.A. Brown, J.S. Harris, S. Calvez, W.Sibbett, 650MHz-prf-femtosecond Cr4+:forsterite laser with dispersion-compensating GaInNAs SESAM, in Conference on Lasers and Electro-optics, Baltimore, Paper JWA76 (2011)

    Google Scholar 

  74. V. Yanovsky, Y. Pang, F. Wise, B.I. Minkov, Generation of 25-fs pulses from a self-mode-locked Cr:forsterite laser with optimized group-delay dispersion. Opt. Lett. 18, 1541–1543 (1993)

    Article  ADS  Google Scholar 

  75. S.A. Zolotovskaya, K.G. Wilcox, A. Abdolvand, D.A. Livshits, E.U. Rafailov, Electronically controlled pulse duration passively mode-locked Cr:forsterite laser. IEEE Photon. Technol. Lett. 21, 1124–1126 (2009)

    Article  ADS  Google Scholar 

  76. V.G. Savitski, D. Burns, S. Calvez, Optically-pumped saturable absorber for fast switching between continuous-wave and passively mode-locked regimes of a Nd:YVO4 laser. Opt. Express 17, 5373–5378 (2009)

    Article  ADS  Google Scholar 

  77. V.G. Savitski, A.J. Kemp, S. Calvez, D. Burns, Optically pumped saturable Bragg reflectors: nonlinear spectroscopy and application in ultrafastlasers. IEEE J. Quantum Electron. 46, 1650–1655 (2010)

    Article  ADS  Google Scholar 

  78. C.G. Leburn, C.T.A. Brown, W. Sibbett, Optically-pumped SESAM for fast switching between continuous wave and passively modelocked regimes of a femtosecond pulse Cr4+:forsterite Laser, in Ultrafast Phenomena XVII, Proceedings of the 17th International Conference, Snowmass, CO, 2010, pp. 715–717

    Google Scholar 

  79. D. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C.T.A. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, K. Dholakia, Femtosecond optical transfection of cells: viability and efficiency. Opt. Express 14, 7125 (2006)

    Article  ADS  Google Scholar 

  80. B. Agate, C.T.A. Brown, W. Sibbett, K. Dholakia, Femtosecond optical tweezers for in-situ control of two-photon fluorescence. Opt. Express 12, 3011 (2004)

    Article  ADS  Google Scholar 

  81. J. Ando, G. Bautista, N. Smith, K. Fujita, V.R. Daria, Optical trapping and surgery of living yeast cells using a single laser. Rev. Sci. Instrum. 79, 103705-103705-5 (2008)

    Google Scholar 

  82. A. McWilliam, A.A. Lagatsky, C.T.A. Brown, W. Sibbett, A.E. Zhukov, V.M. Ustinov, A.P. Vasil'ev, E.U. Rafailov, Quantum-dot-based saturable absorber for femtosecond mode-locked operation of a solid-state laser. Opt. Lett. 31, 1444–1446 (2006)

    Article  ADS  Google Scholar 

  83. D.J. Stevenson, F.J. Gunn-Moore, P. Campbell, K. Dholakia, Single cell optical transfection. J. Royal Soc. 7, 863–871 (2010)

    Google Scholar 

  84. J.H. Lee, S.Y. Chen, C.H. Yu, S.W. Chu, L.F. Wang, C.K. Sun, B.L. Chiang, Noninvasive in vitro and in vivo assessment of epidermal hyperkeratosis and dermal fibrosis in atopic dermatitis. J. Biomed. Opt. 14, 15 (2009)

    Google Scholar 

  85. A.A. Lagatsky, F. Fusari, S. Calvez, S.V. Kurilchik, V.E. Kisel, N.V. Kuleshov, M.D. Dawson, C.T.A. Brown, W. Sibbett, Femtosecond pulse operation of a Tm, Ho-codoped crystalline laser near 2 μm. Opt. Lett. 35, 172–174 (2010)

    Article  ADS  Google Scholar 

  86. A.A. Lagatsky, F. Fusari, S. Calvez, G.A. Gupta, V.E. Kisel, N.V. Kuleshov, C.T.A. Brown, M.D. Dawson, W. Sibbett, Passive modelocking of a Tm, Ho:KY(WO4)2 laser around 2 μm. Opt. Lett. 34, 2587 (2009)

    Article  ADS  Google Scholar 

  87. E.L. Delpon, J.L. Oudar, N. Bouche, R. Raj, A. Shen, N. Stelmakh, J.M. Lourtioz, Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells. Appl. Phys. Lett. 72, 759 (1998)

    Article  ADS  Google Scholar 

  88. J.W. Tomm, V. Strelchuk, A. Gerhardt, U. Zeimer, M. Zorn, H. Kissel, M. Weyers, J. Jimenez, Properties of As+-implanted and annealed GaAs and InGaAs quantum wells: structural and band-structure modifications. J. Appl. Phys. 95, 1122 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher G. Leburn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leburn, C.G., Reid, D.T. (2013). Advances in Solid-State Ultrafast Laser Oscillators. In: Thomson, R., Leburn, C., Reid, D. (eds) Ultrafast Nonlinear Optics. Scottish Graduate Series. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00017-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00017-6_4

  • Published:

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00016-9

  • Online ISBN: 978-3-319-00017-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics