Skip to main content

Semiconductor Device Physics for TFTs

  • Chapter
  • First Online:
Introduction to Thin Film Transistors

Abstract

Two device physics topics are discussed in this chapter, namely, surface band bending and surface charges in the metal–insulator–semiconductor, MIS, structure, and electron-hole pair recombination/generation processes. The treatment of the MIS structure covers the relationship between the voltage on the metal gate, the induced surface charge in the semiconductor and the resulting surface potential. This is treated analytically, using single crystal equations, and the relationships are fundamental to the understanding of IGFET operation. Equally, the concepts are widely employed in analysing TFT behaviour. The electron-hole pair generation process underlies the leakage current behaviour of many semiconductor devices, and can be applied to the analysis of TFT off-state behaviour. The recombination process determines steady state carrier concentrations under injection conditions, such as optical illumination. Finally, there is a brief discussion of carrier flow in semiconductor devices, including the equations used in numerical simulation packages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    VF = (kT/q)ln(Na/ni).

  2. 2.

    Note that in evaluating Eq. 2.10, if the units of Boltzmann’s constant, k, are in eV/K, then q has the value of unity. If SI units are used, then q has its usual value of 1.602 × 10−19 C.

  3. 3.

    The Fermi level position and the free electron concentration can be obtained from the numerical solution of the charge neutrality equation: \( {\text{n}} + {\text{N}}_{\text{T}}^{ - } = {\text{N}}_{\text{d}}^{ + } \).

  4. 4.

    From 2.47, if NT ≪ Nd, \( E_{F} = kT\ln (N_{d} N_{V} /n_{i}^{2} ) \).

  5. 5.

    If these rates are not equal, then the trap occupancy will change with time.

  6. 6.

    The situation described in Sects. 2.3.4.1 and 2.3.4.2 is for n-type substrates, and, for injection into p-type substrates, the low-level lifetime will be determined by electron capture.

  7. 7.

    For a 1-D treatment, we require α < z for uniform carrier generation.

References

  1. Sze SM, Ng KK (2007) Physics of semiconductor devices, 3rd edn. Wiley, New York

    Google Scholar 

  2. http://www.iue.tuwien.ac.at/phd/klima/node8.html (Accessed Aug 2010)

  3. http://www.silvaco.com/products/vwf/atlas/2D/tft/tft_03.pdf (Accessed Aug 2010)

  4. Grove AS (1967) Physics and technology of semiconductor devices. Wiley, New York, pp 278–285

    Google Scholar 

  5. Deal BE, Snow EH, Mead CA (1966) Barrier energies in metal–silicon dioxide–silicon structures. J Phys Chem Solids 27(11–12):1873–1879

    Article  ADS  Google Scholar 

  6. Brotherton SD, Gill A (1978) Determination of surface and bulk generation currents in low leakage silicon MOS structures. Appl Phys Letts 33:890–892

    Article  ADS  Google Scholar 

  7. Berglund CN (1966) Surface states at steam-grown silicon–silicon dioxide interface. IEEE Trans Electron Dev 13(10):701–705

    Article  Google Scholar 

  8. Castagne R, Vapaille A (1971) Description of the Si02–Si interface properties by means of very low frequency MOS capacitance measurements. Surf Sci 28(1):157–193

    Article  ADS  Google Scholar 

  9. Nicollian EH, Goetzberger A (1967) The Si–SiO2 interface—electrical properties as determined by the MIS conductance technique. Bell Syst Tech J 46:1055

    Google Scholar 

  10. Hall RN (1952) Electron-hole recombination in germanium. Phys Rev 87(2):387

    Article  ADS  Google Scholar 

  11. Shockley W, Read WT (1952) Statistics of the recombination of holes and electrons. Phys Rev 87(5):835–842

    Article  ADS  MATH  Google Scholar 

  12. Sah CT, Noyce RN, Shockley W (1957) Carrier generation and recombination in p–n junction and p–n junction characteristics. Proc IRE 45(9):1228–1243

    Article  Google Scholar 

  13. Lax M (1960) Cascade capture of electrons in solids. Phys Rev 119(5):1502–1523

    Article  ADS  Google Scholar 

  14. Brotherton SD, Bradley P (1982) Measurement of minority carrier capture cross sections and application to gold and platinum in silicon. J Appl Phys 53(3):1543–1553

    Article  ADS  Google Scholar 

  15. Caughey DM, Thomas RE (1967) Carrier mobilities in silicon empirically related to doping and field. Proc IEEE 55:2192–2193

    Article  Google Scholar 

  16. Chynoweth AG (1958) Ionisation rates for holes and electrons in silicon. Phys Rev 109(5):1537–1540

    Article  ADS  Google Scholar 

  17. Valletta A, Gaucci P, Mariucci L, Pecora A, Cuscunà M, Maiolo L, Fortunato G (2010) Threshold voltage in short channel polycrystalline silicon thin film transistors: Influence of drain induced barrier lowering and floating body effects. J Appl Phys 107:074505-1–074505-9

    Google Scholar 

  18. Guerrieri G, Ciampolini P, Gnudi A, Rudan M, Baccarani G (1986) Numerical simulation of polycrystalline-silicon MOSFETs. IEEE Trans ED-33(8):1201–1206

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix: Summary of Key Equations

Appendix: Summary of Key Equations

A number of the simplified equations from the text, which can be used in basic analytical calculations, are reproduced below. The equation numbers are retained for quick reference back to the original derivations.

1.1 Semiconductor Surface Band Bending

Relationships between surface potential, Vs, space charge density, Qs, gate voltage, VG, and threshold voltage, VT.

  1. (a)

    Depletion and Inversion Space Charge Density

    $$ Q_{s} \cong - \sqrt {2q\varepsilon_{0} \varepsilon_{s} } \left[ {n_{i} \frac{kT}{q}exp\frac{{q(V_{s} - V_{F} )}}{kT} + N_{a} V_{s} } \right]^{0.5} $$
    (2.12)
  2. (b)

    Depletion Space Charge Density

    $$ Q_{s} \cong - \sqrt {2q\varepsilon_{0} \varepsilon_{s} N_{a} V_{s} } $$
    (2.13)
  3. (c)

    Gate Voltage, Surface Potential and Space Charge Density

    $$ {\text{V}}_{\text{G}} = {\text{ V}}_{\text{s}} - {\text{ Q}}_{\text{s}} /{\text{C}}_{\text{i}} $$
    (2.22)
  4. (d)

    Gate Threshold Voltage

    $$ V_{T} = V_{FB} + \frac{{\sqrt {2q\varepsilon_{0} \varepsilon_{s} N_{a} 2V_{F} } }}{{C_{i} }} + 2V_{F} $$
    (2.28)

    and, from Eq. 2.5, VF = (kT/q)ln(Na/ni)

  5. (e)

    Depletion Layer Thickness at Inversion

    $$ x_{d\hbox{max} } = \sqrt {\frac{{2\varepsilon_{0} \varepsilon_{s} 2V_{F} }}{{qN_{a} }}} $$
    (2.18)
  6. (f)

    Flat-Band Voltage

    $$ {\text{V}}_{\text{FB}} = \Upphi_{\text{MS}} - {\text{ Q}}_{\text{ieff}} /{\text{C}}_{\text{i}} - {\text{ Q}}_{\text{ss}} /{\text{C}}_{\text{i}} $$

1.2 Carrier Recombination and Generation

Relationships between trap density, NT, and capture cross section, σ, and the carrier generation/recombination rates.

  1. (a)

    General Recombination and Generation Rate Expression

    $$ R_{GR} = \frac{{\sigma v_{th} N_{T} [n_{i}^{2} - np]}}{{n + p + 2n_{i} cosh(E_{T} - E_{i} )kT}} $$
    (2.63)
  2. (b)

    Generation Leakage Current

    $$ \, J_{R} \equiv qn_{i} W/\tau_{g} $$
    (2.70)
  3. (c)

    Generation Lifetime, Ï„g

    $$ \tau_{\text{g}} = { 1}/(0. 5 {\text{N}}_{\text{T}} \sigma {\text{v}}_{\text{th}} ) $$
    (2.71a)
  4. (d)

    Carrier Recombination Rate, and Recombination Lifetime, Ï„R

    $$ R_{R} = - \sigma_{p} v_{th} N_{T} \Updelta p \equiv \Updelta p/\tau_{R} $$
    (2.81)
  5. (e)

    Recombination Lifetime (Low Injection Level)

    $$ \tau_{R} = 1/\sigma_{p} v_{th} N_{T} $$
    (2.82)
  6. (f)

    Recombination Lifetime (High Injection Level)

    $$ \tau_{R} = 1/\sigma_{p} v_{th} N_{T} + 1/\sigma_{n} v_{th} N_{T} $$
    (2.89)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing

About this chapter

Cite this chapter

Brotherton, S.D. (2013). Semiconductor Device Physics for TFTs. In: Introduction to Thin Film Transistors. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00002-2_2

Download citation

Publish with us

Policies and ethics