Skip to main content

Abstract

Under the broad umbrella of chemical solution depositions (CSD), synthesis of thick films (>1 μm) using a combination of sol and particles (consisting of particles >100 nm size) has first been reviewed. Here the sol is used to both enhance the sintering and performance of conventional powder films as well as being integral to the formation of true powder-sol composite films where the sol forms in integral part of the deposited ink. Advantages and limitation of these composite sol–gel processing techniques are considered and deposition routes explored. The subsequent sections are devoted to outline the novel concept of composite thin film synthesis using molecular precursors. Based on the authors’ own experience and existing literature, the perspective, potential and possibilities of the electro-ceramic thin films synthesized using sub 100 nm particulate precursor sols has been outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perez J, Vyshatko NP, Vilarinho PM, Kholkin AL (2007) Electrical properties of lead zirconate titanate thick films prepared by hybrid sol–gel method with multiple infiltration steps. Mater Chem Phys 101:280–284

    Article  Google Scholar 

  2. Wang Z, Miaoa J, Zhub W (2007) Piezoelectric thick films and their application in MEMS. J Eur Ceram Soc 27:3759–3764

    Article  Google Scholar 

  3. Kwon TY, Park JH, Kim YB, Yoon DS, Cheon CI, Lee HL, Kim TS (2006) Preparation of piezoelectric 0.1 Pb(Zn0.5W0.5)O3-0.9 Pb(Zr0.5Ti0.5)O3 solid solution and thick films for low temperature firing on Si-substrate. J Cryst Growth 295:172–178

    Article  Google Scholar 

  4. Zhu H, Miao J, Wang Z, Zhao C, Zhu W (2005) Fabrication of ultrasonic arrays with 7 μm PZT thick films as ultrasonic emitter for object detection in air. Sens Actuators A 123–124:614–619

    Article  Google Scholar 

  5. Zhong-Xia D, Jie Y, Quan-Liang Z, Hong-Mei L, Hai-Bo L, Wen-Tong Z, Mao-Sheng C (2008) Preparation and ferroelectric properties of double-scale PZT composite piezoelectric thick film. Chin Phys Lett 25:1472–1475

    Article  Google Scholar 

  6. Dorey RA, Whatmore RW (2004) Electroceramic thick film fabrication for MEMS. J Electroceram 12:19–32

    Article  Google Scholar 

  7. Hrovat M, Holc J, Drnovsek S, Belavic D, Cilensek J, Kosec M (2006) PZT thick films on LTCC substrates with an interposed alumina barrier layer. J Eur Ceram Soc 26:897–900

    Article  Google Scholar 

  8. Torah RN, Beeby SP, Tudor MJ, White NM (2007) Thick-film piezoceramics and devices. J Electroceram 19:95–110

    Article  Google Scholar 

  9. Yao K, He X, Xu Y, Chen M (2005) Screen-printed piezoelectric ceramic thick films with sintering additives introduced through a liquid-phase approach. Sens Actuators A 118:342–348

    Article  Google Scholar 

  10. Gebhardt S, Seffner L, Schlenkrich F, Schönecker A (2007) PZT thick films for sensors and actuator applications. J Eur Ceram Soc 27:4177–4180

    Article  Google Scholar 

  11. Menil F, Debeda H, Lucat C (2005) Screen-printed thick-films: from materials to functional devices. J Eur Ceram Soc 25:2105–2113

    Article  Google Scholar 

  12. Corker DL, Zhang Q, Whatmore RW, Perrin C (2002) PZT ‘composite’ ferroelectric thick films. J Eur Ceram Soc 22:383–390

    Article  Google Scholar 

  13. Villegras M, Moure C, Jurado JR, Duran P (1994) Improvement of sintering and piezoelectric properties of soft lead zirconate titanate ceramics. J Mater Sci 29:497–4983

    Google Scholar 

  14. Tu WC, Lange FF (1995) Liquid precursor infiltration processing of powder compacts: II, fracture toughness and strength. J Am Ceram Soc 79:3283–3289

    Article  Google Scholar 

  15. Lee SG (2007) Effects of sol infiltration on the screen-printed lead zirconate titanate thick films. Mater Lett 61:1982–1985

    Article  Google Scholar 

  16. Dorey RA, Duval FFC, Haigh RD, Whatmore RW (2002) The effect of repeated sol infiltrations on the microstructure and electrical properties of PZT composite sol–gel films. Ferroelectrics 267:373–378

    Article  Google Scholar 

  17. Wu A, Vilarinho PM, Srinivasan S, Kingon AI, Reaney IM, Woodward D, Ramos AR, Alves E (2006) Microstructural studies of PZT thick films on Cu foils. Acta Mater 54:3211–3220

    Article  Google Scholar 

  18. Kindl B, Carlsson DJ, Deslandes Y, Hoddenbagh JMA (1991) Preparation of α-alumina ceramics: the use of boehmite sols as dispersing agents. Ceram Int 17:347–350

    Article  Google Scholar 

  19. Wu J, Chen M, Jones FR, James PF (1993) Mullite and alumina-silica matrices for composites by modified sol–gel processing. J Non Cryst Solids 162:197–200

    Article  Google Scholar 

  20. Barrow DA, Petroff TE, Sayer M (1995) Thick ceramic coatings using a sol–gel based ceramic-ceramic 0–3 composite. Surf Coat Technol 76–77:113–118

    Article  Google Scholar 

  21. Dorey RA, Whatmore RW (2004) Electrical properties of high density PZT and PMN-PT/PZT thick films produced using ComFi technology. J Eur Ceram Soc 24:1091–1094

    Article  Google Scholar 

  22. Ohno T, Kunieda M, Suzuki H, Hayashi T (2000) Low-temperature processing of Pb(Zr0.53, Ti0.47)O3 thin films by sol–gel casting. Jpn J Appl Phys 39:5429–5433

    Article  Google Scholar 

  23. Dorey RA, Stringfellow SB, Whatmore RW (2002) Effect of sintering aid and repeated sol infiltrations on the dielectric and piezoelectric properties of a PZT composite thick film. J Eur Ceram Soc 22:2921–2926

    Article  Google Scholar 

  24. Kholkin AL, Yarmarkin VK, Wu A, Avdeev M, Vilarinho PM, Baptista JL (2001) PZT-based piezoelectric composites via a modified sol–gel route. J Eur Ceram Soc 21:1535–1538

    Article  Google Scholar 

  25. Dorey RA, Haigh RD, Stringfellow SB, Whatmore RW (2002) Effect of sol infiltrations on the electrical properties of PZT. Br Ceram Trans 101:146–148

    Article  Google Scholar 

  26. Dorey RA, Whatmore RW (2002) Apparent reduction in the value of the d33 piezoelectric coefficient in PZT thick films. Integr Ferroelectr 50:111–119

    Article  Google Scholar 

  27. Dorey RA, Whatmore RW, Beeby SP, Torah RN, White NM (2003) Screen printed PZT thick films using composite film technology. Integr Ferroelectr 54:651–658

    Article  Google Scholar 

  28. Dorey RA, Whatmore RW, Beeby SP, Torah RN, White NM (2004) Screen printed PZT composite thick films. Integr Ferroelectr 63:601–604

    Article  Google Scholar 

  29. Kholkin AL, Yarmarkin VK, Wu A, Vilarinho PM, Baptista JL (2000) Thick piezoelectric coatings via modified sol–gel techniques. Integr Ferroelectr 30:245–252

    Article  Google Scholar 

  30. Kobayashi M, Olding TR, Sayer M, Jen CK (2002) Piezoelectric thick film ultrasonic transducer fabricated by a sol–gel spray technique. Ultrasonics 39:675–680

    Article  Google Scholar 

  31. Wang D, Edirisinghe MJ, Dorey RA (2008) Formation of PZT crack-free thick films by electrohydrodynamicatomization deposition. J Eur Ceram Soc 28:2739–2745

    Article  Google Scholar 

  32. Sun D, Rocks SA, Wang D, Edirisinghe MJ, Dorey RA (2008) Novel forming of columnar lead zirconate titanate structures. J Eur Ceram Soc 28:3131–3139

    Article  Google Scholar 

  33. Yamane M (1998) Preparation of thick PZT ceramic film by an interfacial polymerisation. J Sol-Gel Sci Technol 13:821–825

    Article  Google Scholar 

  34. Tsurumi T, Ozawa S, Abe G, Ohashi N, Wada S, Yamane M (2000) Preparation of Pb(Zr0.53Ti0.47)O3 thick films by an interfacial polymerisation method on silicon substrates and their electric and piezoelectric properties. Jpn J Appl Phys 39:5604–5608

    Article  Google Scholar 

  35. Li K, Chan HLW, Lee KW, Choy CL (2000) Preparation of thick PZT films on stainless steel substrates. Integr Ferroelectr 30:253–260

    Article  Google Scholar 

  36. Wang Z, Zhao C, Zhu W, Tan OK, Yao X (2002) Processing and characterization of Pb(Zr,Ti)O3 thick films on platinum-coated silicon substrates derived from sol–gel deposition. Mater Chem Phys 75:71–75

    Article  Google Scholar 

  37. Duval FFC, Dorey RA, Zhang Q, Whatmore RW (2003) Lead germanium oxide sinter assisted PZT composite thick film. J Eur Ceram Soc 23:1935–1941

    Article  Google Scholar 

  38. Dauchy F, Dorey RA (2007) Thickness mode high frequency MEMS piezoelectric micro ultrasound transducers. J Electroceram 19:383–386

    Article  Google Scholar 

  39. Duval FFC, Dorey RA, Haigh RH, Whatmore RW (2003) Stable TiO2/Pt electrode structure for lead containing ferroelectric thick films on silicon MEMS structures. Thin Solid Films 444:235–240

    Article  Google Scholar 

  40. MacManus-Driscoll JL (2010) Self-assembled heteroepitaxial oxide nanocomposite thin film structures: designing interface-induced functionality in electronic materials. Adv Funct Mater 20:2035–2045

    Article  Google Scholar 

  41. Granqvist CG (2008) Oxide electrochromics: why, how, and whither. Sol Energ Mater Sol Cells 92:203–208

    Article  Google Scholar 

  42. Roy S, Chatterjee R, Majumder SB (2011) Magnetoelectric coupling in sol–gel synthesized dilute magnetostrictive-piezoelectric composite thin film. J Appl Phys 110:036101-1–036101-4

    Article  Google Scholar 

  43. Schneller T, Halder S, Waser R, Pithan C, Dornseiffer J, Shiratori Y, Houben L, Vyshnavi N, Majumder SB (2011) Nanocomposite thin films for miniaturized multi-layer ceramic capacitors prepared from barium titanate nanoparticle based hybrid solutions. J Mater Chem 21:11631–11638

    Article  Google Scholar 

  44. Logvenov G, Gozar A, Bozovic I (2009) High-temperature superconductivity in a single copper-oxygen plane. Science 326:699–702

    Article  Google Scholar 

  45. Bousquet E, Dawber M, Stucki N, Lichtensteiger C, Hermet P, Gariglio S, Triscone JM, Ghosez P (2008) Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452:732–737

    Article  Google Scholar 

  46. Hennings DFK (2001) Dielectric materials for sintering in reducing atmospheres. J Eur Ceram Soc 21:1637–1642

    Article  Google Scholar 

  47. Sato S, Nakano Y, Sato A, Nomura T (1999) Mechanism of improvement of resistance degradation in Y-doped BaTiO3 based MLCCs with Ni electrodes under highly accelerated life testing. J Eur Ceram Soc 19:1061–1065

    Article  Google Scholar 

  48. Liu X, Cheng S, Randall CA (1998) The core–shell structure in ultrafine X7R dielectric ceramics. J Korean Phys Soc 32:S312–S515

    Google Scholar 

  49. Pithan C, Schneller T, Shiratori Y, Majumder SB, Haegel FH, Dornseiffer J, Waser R (2006) Microemulsion mediated synthesis of nanocrystalline BaTiO3: possibilities, potential and perspectives. Int J Mater Res 5:499–507

    Google Scholar 

  50. Kishi H, Mizuno Y, Chazono H (2003) Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn J Appl Phys 42:1–15

    Article  Google Scholar 

  51. Sahoo SK, Agrawal DC, Mohapatra YN, Majumder SB, Katiyar RS (2004) Changes in the leakage currents in Ba0.8Sr0.2TiO3∕ZrO2 multilayers due to modulations in oxygen concentration. Appl Phys Lett 85:5001–5003

    Article  Google Scholar 

  52. Shukla D, Mehra A (2006) Modeling shell formation in core − shell nanocrystals in reverse micelle systems. Langmuir 22:9500–9506

    Article  Google Scholar 

  53. Li M, Ober CK (2006) Block copolymer patterns and templates. Mater Today 9:30–39

    Article  Google Scholar 

  54. Bates FS (1991) Polymer-polymer phase behavior. Science 251:898–905

    Article  Google Scholar 

  55. Vopsaroiu M, Blackburn J, Cain MG (2007) A new magnetic recording read head technology based on the magneto-electric effect. J Phys D 40:5027–5033

    Article  Google Scholar 

  56. Zhang Y, Li Z, Deng C, Ma J, Lin Y, Nan CW (2008) Demonstration of magnetoelectric read head of multiferroic heterostructures. Appl Phys Lett 92:152510–152512

    Article  Google Scholar 

  57. Liu M, Obi O, Lou J, Chen Y, Cai Z, Stoute S, Espanol M, Lew M, Situ X, Ziemer KS, Harris VG, Sun NX (2009) Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures. Adv Funct Mater 19:1826–1831

    Article  Google Scholar 

  58. Bibes M, Barthelemy A (2008) Multiferroics: towards a magnetoelectric memory. Nat Mater 7:425–426

    Article  Google Scholar 

  59. Gajek M, Bibe M, Fusi S, Bouzehouane K, Fontcuberta J, Barthélémy A, Fert A (2007) Tunnel junctions with multiferroic barriers. Nat Mater 6:296–302

    Article  Google Scholar 

  60. Roy S, Majumder SB (2011) Percolative dielectric behavior of wet chemical synthesized lead lanthanum titanate – cobalt iron oxide composite thin films. Phys Lett A 375:1538–1542

    Article  Google Scholar 

  61. Roy S, Chatterjee R, Majumder SB (2011) Magnetoelectric coupling in sol–gel synthesized dilute magnetostrictive-piezoelectric composite thin films. J Appl Phys 110:036101–036103

    Article  Google Scholar 

  62. Li XH, Xu CL, Han XH, Qiao L, Wang T, Li FS (2010) Synthesis, and magnetic properties of nearly monodisperse CoFe2O4 nanoparticles through a simple hydrothermal condition. Nanoscale Res Lett 5:1039–1044

    Article  Google Scholar 

  63. Roy S, Majumder SB (2012) Optical characteristic of sol–gel synthesized lead lanthanum titanate-cobalt iron oxide multiferroic composite thin film. J Appl Phys 112:043520–043528

    Article  Google Scholar 

  64. Patil A, Patil V, Shin DW, Choi JW, Paik DS, Yoon SJ (2008) Issues and challenges facing rechargeable thin film lithium batteries. Mater Res Bull 43:1913–1942

    Article  Google Scholar 

  65. Xu B, Qian D, Wang Z, Meng YS (2012) Recent progress in cathode materials research for advanced lithium ion batteries. Mater Sci Eng R 73:51–65

    Article  Google Scholar 

  66. Sivaprakash S, Majumder SB (2010) Spectroscopic analyses of 0.5Li[Ni0.8Co0.15Zr0.05]O2–0.5Li[Li1/3Mn2/3]O2 composite cathodes for lithium rechargeable batteries. Solid State Ion 181:730–739

    Article  Google Scholar 

  67. Ghanty C, Basu RN, Majumder SB (2012) Performance of wet chemical synthesized xLi2MnO3-(1-x)Li(Mn0.375Ni0.375Co0.25)O2 (0.0 ≤ x ≤ 1.0) integrated cathode for lithium rechargeable battery. J Electrochem Soc 159:A1125–A1134

    Article  Google Scholar 

  68. Amalraj F, Kovacheva D, Talianker M, Zeiri L, Grinblat J, Leifer GG, Markovsky B, Aurbach D (2010) Synthesis of integrated cathode materials xLi2MnO3-(1 − x)LiMn1/3Ni1/3Co1/3O2 (x = 0.3, 0.5, 0.7) and studies of their electrochemical behavior. J Electrochem Soc 157:A1121–A1130

    Article  Google Scholar 

  69. Sivaprakash S, Majumder SB (2010) Synthesis and electrochemical characteristics of Li[Ni0.375Mn0.375Co0.2]O2–[Li1/3Mn2/3]O2 cathode materials for Li rechargeable batteries. J Electrochem Soc 157:A418–A422

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors S.B. Majumder wishes to thank Alexander von Humboldt foundation for the partial financial support to carry out the research work. Mr. C. Ghanty, would also like to acknowledge CSIR, Govt. of India for providing him a Research Fellowship under CSIR-NET scheme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert Dorey or Subhasish B. Majumder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Dorey, R., Roy, S., Sharma, A., Ghanty, C., Majumder, S.B. (2013). Composite Film Processing. In: Schneller, T., Waser, R., Kosec, M., Payne, D. (eds) Chemical Solution Deposition of Functional Oxide Thin Films. Springer, Vienna. https://doi.org/10.1007/978-3-211-99311-8_19

Download citation

Publish with us

Policies and ethics