Skip to main content

Part of the book series: Milestones in Drug Therapy ((MDT))

  • 1397 Accesses

Abstract

Lymphangioleiomyomatosis (LAM) is a rare neoplastic disease, characterized by the proliferation of abnormal smooth muscle-like cells (LAM cells) in the lungs and along axial lymphatics, usually of females. Additionally, LAM-associated lymphangiogenesis is present in LAM lesions. LAM occurs as either a pulmonary manifestation of tuberous sclerosis complex (TSC-LAM) or a sporadic disease (sporadic LAM) often accompanying renal angiomyolipoma (AML). Previously, LAM was considered hamartomatous in nature but is now recognized as a neoplastic disease with either TSC1 or TSC2 mutations, both of which are tumor suppressor genes. TSC-LAM can occur due to a loss-of-function type mutation of either of these TSC genes, whereas sporadic LAM is solely a TSC2 disease. A recent discovery was that not all LAM cells within LAM lesions harbor the TSC mutation; instead, only a small fraction of LAM cells bear the pathogenic mutation. Furthermore, the involvement of an alternative genetic basis other than that from the TSC genes has been suggested. Studies of surface markers on LAM cells in the blood and body fluids demonstrated that LAM cells are phenotypically heterogeneous dependent on where LAM cells exist. Loss-of-heterozygosity (LOH) analysis of LAM cells in the blood and body fluids determined that LAM cells are genetically heterogeneous; that is, about 20 % of LAM patients showed different extents of LOH regions in LAM cells isolated from multiple sites.

LAM-associated lymphangiogenesis is regulated by not only lymphatic endothelial cell growth factor, VEGF-D produced by LAM cells, but also the non-collagenous-1 domain (NC1 domain) of type IV collagen α5, named lamstatin. Lymphangiogenesis and estrogen seem to have cooperative roles in the progression of this disease. Estrogen operates in several intracellular signaling pathways that are relevant to the pathogenesis of LAM. In this milieu, estrogen enhances matrix metalloproteinase-2 production by LAM cells and promotes the survival of circulating LAM cells. LAM cells can enter the lymphatic stream either through activated mTORC1-mediated cellular and biochemical events or via lymphangiogenesis-mediated fragmentation of LAM lesions to shed LAM cell clusters.

Given that LAM cells are neoplastic, we must establish where such cells originate and identify their normal counterparts. The female genital tract including the uterus is an attractive candidate, since the majority of LAM patients examined had LAM lesions in the uterus and nearby lymph nodes. Another yet unsolved but important question is why LAM is limited to females; so far, we have no clues to the answer in terms of genetic background, biochemical composition, or cellular mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Astrinidis A, Khare L, Carsillo T, Smolarek T, Au KS, Northrup H, Henske EP (2000) Mutational analysis of the tuberous sclerosis gene TSC2 in patients with pulmonary lymphangioleiomyomatosis. J Med Genet 37(1):55–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badri KR, Gao L, Hyjek E, Schuger N, Schuger L, Qin W, Chekaluk Y, Kwiatkowski DJ, Zhe X (2013) Exonic mutations of TSC2/TSC1 are common but not seen in all sporadic pulmonary lymphangioleiomyomatosis. Am J Respir Crit Care Med 187(6):663–665. doi:10.1164/ajrccm.187.6.663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonetti F, Pea M, Martignoni G, Doglioni C, Zamboni G, Capelli P, Rimondi P, Andrion A (1994) Clear cell (“sugar”) tumor of the lung is a lesion strictly related to angiomyolipoma—the concept of a family of lesions characterized by the presence of the perivascular epithelioid cells (PEC). Pathology 26(3):230–236

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Pacheco-Rodriguez G, Fan QY, Haughey M, Samsel L, El-Chemaly S, Wu HP, McCoy JP, Steagall WK, Lin JP, Darling TN, Moss J (2010) Phenotypic characterization of disseminated cells with TSC2 loss of heterozygosity in patients with lymphangioleiomyomatosis. Am J Respir Crit Care Med 182(11):1410–1418. doi:10.1164/rccm.201003-0489OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X, Pacheco-Rodriguez G, Haughey M, Samsel L, Xu S, Wu HP, McCoy JP, Stylianou M, Darling TN, Moss J (2014) Sirolimus decreases circulating lymphangioleiomyomatosis cells in patients with lymphangioleiomyomatosis. Chest 145(1):108–112. doi:10.1378/chest.13-1071

    Article  CAS  PubMed  Google Scholar 

  • Carsillo T, Astrinidis A, Henske EP (2000) Mutations in the tuberous sclerosis complex gene TSC2 are a cause of sporadic pulmonary lymphangioleiomyomatosis. Proc Natl Acad Sci USA 97(11):6085–6090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crooks DM, Pacheco-Rodriguez G, DeCastro RM, McCoy JP Jr, Wang JA, Kumaki F, Darling T, Moss J (2004) Molecular and genetic analysis of disseminated neoplastic cells in lymphangioleiomyomatosis. Proc Natl Acad Sci USA 101(50):17462–17467. doi:10.1073/pnas.0407971101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folpe AL, Kwiatkowski DJ (2010) Perivascular epithelioid cell neoplasms: pathology and pathogenesis. Hum Pathol 41(1):1–15. doi:10.1016/j.humpath.2009.05.011

    Article  CAS  PubMed  Google Scholar 

  • Gu X, Yu JJ, Ilter D, Blenis N, Henske EP, Blenis J (2013) Integration of mTOR and estrogen-ERK2 signaling in lymphangioleiomyomatosis pathogenesis. Proc Natl Acad Sci USA 110(37):14960–14965. doi:10.1073/pnas.1309110110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi T, Fleming MV, Stetler-Stevenson WG, Liotta LA, Moss J, Ferrans VJ, Travis WD (1997) Immunohistochemical study of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in pulmonary lymphangioleiomyomatosis (LAM). Hum Pathol 28(9):1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Kumasaka T, Mitani K, Terao Y, Watanabe M, Oide T, Nakatani Y, Hebisawa A, Konno R, Takahashi K, Yao T, Seyama K (2011) Prevalence of uterine and adnexal involvement in pulmonary lymphangioleiomyomatosis: a clinicopathologic study of 10 patients. Am J Surg Pathol 35(12):1776–1785. doi:10.1097/PAS.0b013e318235edbd

    Article  PubMed  Google Scholar 

  • Henske EP, Neumann HP, Scheithauer BW, Herbst EW, Short MP, Kwiatkowski DJ (1995) Loss of heterozygosity in the tuberous sclerosis (TSC2) region of chromosome band 16p13 occurs in sporadic as well as TSC-associated renal angiomyolipomas. Genes Chromosomes Cancer 13(4):295–298

    Article  CAS  PubMed  Google Scholar 

  • Iwasa Y, Tachibana M, Ito H, Iwami S, Yagi H, Yamada S, Okagaki A, Ban C, Mano M, Kodama Y, Ueda M (2011) Extrapulmonary lymphangioleiomyomatosis in pelvic and para-aortic lymph nodes associated with uterine cancer: a report of 3 cases. Int J Gynecol Pathol Off J Int Soc Gynecol Pathol 30(5):470–475. doi:10.1097/PGP.0b013e318212e1e6

    Article  Google Scholar 

  • Kumasaka T, Seyama K, Mitani K, Souma S, Kashiwagi S, Hebisawa A, Sato T, Kubo H, Gomi K, Shibuya K, Fukuchi Y, Suda K (2005) Lymphangiogenesis-mediated shedding of LAM cell clusters as a mechanism for dissemination in lymphangioleiomyomatosis. Am J Surg Pathol 29(10):1356–1366

    Article  PubMed  Google Scholar 

  • Lee PS, Tsang SW, Moses MA, Trayes-Gibson Z, Hsiao LL, Jensen R, Squillace R, Kwiatkowski DJ (2010) Rapamycin-insensitive up-regulation of MMP2 and other genes in tuberous sclerosis complex 2-deficient lymphangioleiomyomatosis-like cells. Am J Respir Cell Mol Biol 42(2):227–234. doi:10.1165/rcmb.2009-0050OC

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhou X, Sun Y, Zhang E, Mancini JD, Parkhitko A, Morrison TA, Silverman EK, Henske EP, Yu JJ (2013) Faslodex inhibits estradiol-induced extracellular matrix dynamics and lung metastasis in a model of lymphangioleiomyomatosis. Am J Respir Cell Mol Biol 49(1):135–142. doi:10.1165/rcmb.2012-0476OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormack FX, Inoue Y, Moss J, Singer LG, Lee HS, Trapnell BC (2012) The MILES trial: effect of menopausal status on disease progression and treatment responses in lymphangioleiomyomatosis. Am J Respir Crit Care Med 185:A4442

    Google Scholar 

  • Mitani K, Kumasaka T, Takemura H, Hayashi T, Gunji Y, Kunogi M, Akiyoshi T, Takahashi K, Suda K, Seyama K (2009) Cytologic, immunocytochemical and ultrastructural characterization of lymphangioleiomyomatosis cell clusters in chylous effusions of patients with lymphangioleiomyomatosis. Acta Cytol 53(4):402–409

    Article  PubMed  Google Scholar 

  • Moses MA, Harper J, Folkman J (2006) Doxycycline treatment for lymphangioleiomyomatosis with urinary monitoring for MMPs. N Engl J Med 354(24):2621–2622. doi:10.1056/NEJMc053410

    Article  CAS  PubMed  Google Scholar 

  • Prizant H, Sen A, Light A, Cho SN, DeMayo FJ, Lydon JP, Hammes SR (2013) Uterine-specific loss of Tsc2 leads to myometrial tumors in both the uterus and lungs. Mol Endocrinol 27(9):1403–1414. doi:10.1210/me.2013-1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin W, Bajaj V, Malinowska I, Lu X, MacConaill L, Wu CL, Kwiatkowski DJ (2011) Angiomyolipoma have common mutations in TSC2 but no other common genetic events. PLoS One 6(9):e24919. doi:10.1371/journal.pone.0024919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato T, Seyama K, Fujii H, Maruyama H, Setoguchi Y, Iwakami S, Fukuchi Y, Hino O (2002) Mutation analysis of the TSC1 and TSC2 genes in Japanese patients with pulmonary lymphangioleiomyomatosis. J Hum Genet 47(1):20–28. doi:10.1007/s10038-002-8651-8

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Seyama K, Kumasaka T, Fujii H, Setoguchi Y, Shirai T, Tomino Y, Hino O, Fukuchi Y (2004) A patient with TSC1 germline mutation whose clinical phenotype was limited to lymphangioleiomyomatosis. J Intern Med 256(2):166–173. doi:10.1111/j.1365-2796.2004.01356.x

    Article  CAS  PubMed  Google Scholar 

  • Smolarek TA, Wessner LL, McCormack FX, Mylet JC, Menon AG, Henske EP (1998) Evidence that lymphangiomyomatosis is caused by TSC2 mutations: chromosome 16p13 loss of heterozygosity in angiomyolipomas and lymph nodes from women with lymphangiomyomatosis. Am J Hum Genet 62(4):810–815. doi:10.1086/301804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugino T, Kusakabe T, Hoshi N, Yamaguchi T, Kawaguchi T, Goodison S, Sekimata M, Homma Y, Suzuki T (2002) An invasion-independent pathway of blood-borne metastasis: a new murine mammary tumor model. Am J Pathol 160(6):1973–1980. doi:10.1016/S0002-9440(10)61147-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugino T, Yamaguchi T, Ogura G, Saito A, Hashimoto T, Hoshi N, Yoshida S, Goodison S, Suzuki T (2004) Morphological evidence for an invasion-independent metastasis pathway exists in multiple human cancers. BMC Med 2:9. doi:10.1186/1741-7015-2-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Gu X, Zhang E, Park MA, Pereira AM, Wang S, Morrison T, Li C, Blenis J, Gerbaudo VH, Henske EP, Yu JJ (2014) Estradiol promotes pentose phosphate pathway addiction and cell survival via reactivation of Akt in mTORC1 hyperactive cells. Cell Death Dis 5:e1231. doi:10.1038/cddis.2014.204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weckmann M, Moir LM, Heckman CA, Black JL, Oliver BG, Burgess JK (2012) Lamstatin—a novel inhibitor of lymphangiogenesis derived from collagen IV. J Cell Mol Med 16(12):3062–3073. doi:10.1111/j.1582-4934.2012.01648.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Astrinidis A, Howard S, Henske EP (2004) Estradiol and tamoxifen stimulate LAM-associated angiomyolipoma cell growth and activate both genomic and nongenomic signaling pathways. Am J Physiol Lung Cell Mol Physiol 286(4):L694–L700. doi:10.1152/ajplung.00204.2003

    Article  CAS  PubMed  Google Scholar 

  • Yu JJ, Robb VA, Morrison TA, Ariazi EA, Karbowniczek M, Astrinidis A, Wang C, Hernandez-Cuebas L, Seeholzer LF, Nicolas E, Hensley H, Jordan VC, Walker CL, Henske EP (2009) Estrogen promotes the survival and pulmonary metastasis of tuberin-null cells. Proc Natl Acad Sci USA 106(8):2635–2640. doi:10.1073/pnas.0810790106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamboni G, Pea M, Martignoni G, Zancanaro C, Faccioli G, Gilioli E, Pederzoli P, Bonetti F (1996) Clear cell “sugar” tumor of the pancreas. A novel member of the family of lesions characterized by the presence of perivascular epithelioid cells. Am J Surg Pathol 20(6):722–730

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Ms. Phyllis Minick for her excellent proofreading of our English writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuniaki Seyama M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Seyama, K. (2017). Lymphangioleiomyomatosis. In: Azuma, A., Schechter, M. (eds) Treatment of Cystic Fibrosis and Other Rare Lung Diseases. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0348-0977-1_5

Download citation

Publish with us

Policies and ethics