Skip to main content

The Role of Inflammatory Cells in Angiogenesis in Multiple Myeloma

  • Chapter
  • First Online:
Inflammation and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 816))

Abstract

Both innate and adaptive immune cells are involved in the mechanisms of endothelial cell proliferation, migration and activation, via production and release of a large spectrum of pro-angiogenic mediators, thus creating the specific microenvironment that favors increased rate of tissue vascularization. In this article, we focus on the immune cell component of the angiogenic process occurring during multiple myeloma progression. We also provide information on some anti-angiogenic properties of immune cells that may be applied for a potential pharmacological use as anti-angiogenic agents in the disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Majid RM, Marshall JS (2004) Prostaglandin E2 induces degranulation independent production of vascular endothelial growth factor by human mast cells. J Immunol 172:1227–1236

    CAS  PubMed  Google Scholar 

  • Aharinejad S, Abraham D, Paulus P et al (2002) Colony-stimulating factor-1 antisense treatment suppresses growth of human tumor xenografts in mice. Cancer Res 62:5317–5324

    CAS  PubMed  Google Scholar 

  • Aharinejad S, Paulus P, Sioud M et al (2004) Colony-stimulating factor-1 blockade by antisense oligonucleotide and small interfering RNAs suppresses growth of human mammary tumor xenograft in mice. Cancer Res 64:5378–5384

    CAS  PubMed  Google Scholar 

  • Andreu P, Johansson M, Affara NI et al (2010) FcR gamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 17:121–134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Angiolillo AL, Sgadari C, Taub DD et al (1995) Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med 182:155–162

    CAS  PubMed  Google Scholar 

  • Aoki M, Pawankar R, Niimi Y et al (2003) Mast cells in basal cell carcinoma express VEGF, IL-8 and RANTES. Int Arch Allergy Immunol 130:216–223

    CAS  PubMed  Google Scholar 

  • Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    CAS  PubMed  Google Scholar 

  • Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217

    CAS  PubMed  Google Scholar 

  • Basile A, Moschetta M, Ditonno P et al (2013) Pentraxin 3 (PTX3) inhibits plasma cell/stromal cell cross-talk in the bone marrow of multiple myeloma patients. J Pathol 229:87–98

    CAS  PubMed  Google Scholar 

  • Benitez-Bribiesca L, Wong A, Utrera D et al (2001) The role of mast cell tryptase in neoangiogenesis of premalignant and malignant lesions of the uterine cervix. J Histochem Cytochem 49:1061–1062

    CAS  PubMed  Google Scholar 

  • Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254–265

    CAS  PubMed  Google Scholar 

  • Blair RJ, Meng H, Marchese MJ et al (1997) Human mast cells stimulate vascular tube formation: tryptase is a novel potent angiogenic factor. J Clin Invest 99:2691–2700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boesiger J, Tsai M, Maurer M et al (1998) Mast cells can secrete vascular permeability factor/vascular endothelial cell growth factor and exhibit enhanced release after immunoglobulin E-dependent upregulation of fc epsilon receptor I expression. J Exp Med 188:1135–1145

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bowrey PF, King J, Magarey C et al (2000) Histamine, mast cells and tumour cell proliferation in breast cancer: does preoperative cimetidine administration have an effect? Br J Cancer 82:167–170

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cocco C, Morandi F, Airoldi J (2011) Interleukin-27 and interleukin-23 modulate human plasma cell functions. J Leukoc Biol 89:729–734

    CAS  PubMed  Google Scholar 

  • Colombo MP, Trinchieri G (2002) Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev 13:155–168

    CAS  PubMed  Google Scholar 

  • Coussens LM, Raymond WW, Bergers G et al (1999) Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13:1382–1397

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coussens LM, Tinkle CL, Hanahan D et al (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103:481–490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Denhardt DT, Noda M, O’Regan AW et al (2001) Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest 107:1055–1061

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Palma M, Venneri MA, Galli R et al (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–226

    PubMed  Google Scholar 

  • Detmar M, Brown LF, Schön MP et al (1998) Increased microvascular density and enhanced leukocyte rolling and adhesionin the skin of VEGF transgenic mice. J Invest Dermatol 111:1–6

    CAS  PubMed  Google Scholar 

  • Detoraki A, Staiano RI, Granata F et al (2009) Vascular endothelial growth factors synthesized by human lung mast cells exert angiogenic effects. J Allergy Clin Immunol 123:1142–1149

    CAS  PubMed  Google Scholar 

  • de Visser KE, Korets LV, Coussens LM (2005) De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7:411–423

    PubMed  Google Scholar 

  • Dias S, Boyd R, Balkwill F (1998) IL-12 regulates VEGF and MMPs in a murine breast cancer model. Int J Cancer 78:361–365

    CAS  PubMed  Google Scholar 

  • Dineen SP, Lynn KD, Holloway SE et al (2008) Vascular endothelial growth factor receptor 2 mediates macrophage infiltration into orthotopic pancreatic tumors in mice. Cancer Res 68:4340–4346

    CAS  PubMed  Google Scholar 

  • Di Raimondo F, Azzaro MP, Palombo G et al (2000) Angiogenic factors in multiple myeloma: higher levels in bone marrow than in peripheral blood. Haematologica 85:800–805

    PubMed  Google Scholar 

  • Dvorak AM, Mihm MC Jr, Osage JE et al (1980) Melanoma. An ultrastructural study of the host inflammatory and vascular responses. J Invest Dermatol 75:388–393

    CAS  PubMed  Google Scholar 

  • Egami K, Murohara T, Shimada T et al (2003) Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. J Clin Invest 112:67–75

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elpek GO, Gelen T, Aksoy NH et al (2001) The prognostic relevance of angiogenesis and mast cells in squamous cell carcinoma of the esophagus. J Clin Pathol 54:940–944

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fukushima N, Satoh T, Sano M et al (2001) Angiogenesis and mast cells in non-Hodgkin’s lymphoma: a strong correlation in angioimmunoblastic T-cell lymphoma. Leuk Lymphoma 42:709–720

    CAS  PubMed  Google Scholar 

  • Giraudo E, Inoue M, Hanahan D (2004) An aminobisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 114:623–633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glowacki J, Mulliken JB (1982) Mast cells in hemangiomas and vascular malformations. Pediatrics 70:48–51

    CAS  PubMed  Google Scholar 

  • Gounaris E, Erdman SE, Restaino C et al (2007) Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci USA 104:19977–19982

    CAS  PubMed Central  PubMed  Google Scholar 

  • Graham R, Graham J (1996) Mast cells and cancer of the cervix. Surg Gynecol Obstet 123:3–9

    Google Scholar 

  • Grimbaldesnton MA, Nakae S, Kalesnikoff K et al (2007) Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol 38:1095–1104

    Google Scholar 

  • Gruber BL, Marchese MJ, Kew R (1995) Angiogenic factors stimulate mast cell migration. Blood 86:2488–2493

    CAS  PubMed  Google Scholar 

  • Grützkau A, Krüger-Krasagakes S, Baumeister H et al (1998) Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206. Mol Biol Cell 9:875–884

    PubMed Central  PubMed  Google Scholar 

  • Guiducci L, Vicari AP, Sangaletti S et al (2005) Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 65:3437–3446

    CAS  PubMed  Google Scholar 

  • Hanada T, Nakagawa M, Emoto A et al (2000) Prognostic value of tumor-associated macrophage count in human bladder cancer. Int J Urol 7:263–269

    CAS  PubMed  Google Scholar 

  • Hartveit F (1981) Mast cells and metachromasia in human breast cancer: their occurrence, significance and consequence: a preliminary report. J Pathol 134:7–11

    CAS  PubMed  Google Scholar 

  • Hideshima T, Mitsiades C, Tonon G et al (2007) Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 7:585–598

    CAS  PubMed  Google Scholar 

  • Huang B, Lei Z, Zhang GM et al (2008) SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 112:1269–1279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imada A, Shijubo N, Koijma H et al (2000) Mast cells correlate with angiogenesis and poor outcome in stage I lung adenocarcinoma. Eur Resp J 15:1087–1093

    CAS  Google Scholar 

  • Imtiyaz HZ, Williams EP, Hickey MM et al (2010) Hypoxia-inducible factor 2 alpha regulates macrophage function in mouse models of acute and tumor inflammation. J Clin Invest 120:2699–2714

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jenkins DC, Charles IG, Thomsen LL et al (1995) Roles of nitric oxide in tumor growth. Proc Natl Acad Sci USA 92:4392–4396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kanbe N, Kurosawa M, Nagata H et al (2000) Production of fibrogenic cytokines by cord blood-derived cultured human mast cells. J Allergy Clin Immunol 106:S85–S90

    CAS  PubMed  Google Scholar 

  • Klimp AH, Hollema H, Kempinga C et al (2001) Expression of cyclooxygenase-2 and inducible nitric oxide synthase in human ovarian tumors and tumor-associated macrophages. Cancer Res 61:7305–7309

    Google Scholar 

  • Koide N, Nishio A, Sato T et al (2004) Significance of macrophage chemoattractant protein-1 expression and macrophage infiltration in squamous cell carcinoma of the esophagus. Am J Gastroenterol 99:1667–1674

    CAS  PubMed  Google Scholar 

  • Kumar S, Witzig TE, Timm M et al (2004) Bone marrow angiogenic ability and expression of angiogenic cytokines in myeloma: evidence favouring loss of marrow angiogenesis inhibitory activity with disease progression. Blood 104:1159–1165

    CAS  PubMed  Google Scholar 

  • Lachter J, Stein M, Lichting C et al (1995) Mast cells in colorectal neoplasias and premalignant disorders. Dis Colon Rectum 38:290–293

    CAS  PubMed  Google Scholar 

  • Leali D, Dell’Era P, Stabile H et al (2003) Osteopontin (Eta-1) and fibroblast growth factor-2 cross-talk in angiogenesis. J Immunol 171:1085–1093

    CAS  PubMed  Google Scholar 

  • Leek RD, Lewis CE, Whitehouse R et al (1996) Association of macrophage infiltration with breast carcinoma. Cancer Res 56:4625–4629

    CAS  PubMed  Google Scholar 

  • Leek RD, Landers RJ, Harris AL et al (1999) Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. Br J Cancer 79:991–995

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis CE, Leek R, Harris A et al (1995) Cytokine regulation of angiogenesis in breast cancer: the role of tumor-associated macrophages. J Leukoc Biol 57:747–751

    CAS  PubMed  Google Scholar 

  • Lin EY, Nguyen AV, Russel RG et al (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193:727–740

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin EY, Li JF, Gnatovskiy L et al (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66:11238–11246

    CAS  PubMed  Google Scholar 

  • Lin EY, Li JF, Bricard G et al (2007) Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Mol Oncol 1:288–302

    PubMed Central  PubMed  Google Scholar 

  • Lissbrant IF, Stattin P, Wikstrom P et al (2000) Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival. Int J Oncol 17:445–451

    CAS  PubMed  Google Scholar 

  • Makitie T, Summanen P, Takkanen A et al (2001) Tumor-infiltrating macrophages (CD68+ cells) and prognosis in malignant uveal melanoma. Invest Ophtalmol Vis Sci 42:1414–1421

    CAS  Google Scholar 

  • Mangieri D, Nico B, Benagiano V et al (2008) Angiogenic activity of multiple myeloma endothelial cells in vivo in the chick embryo chorioallantoic membrane assay is associated to a down-regulation in the expression of endogenous endostatin. J Cell Mol Med 12:1023–1028

    CAS  PubMed  Google Scholar 

  • Manthey CL, Johnson DL, Illig CR et al (2009) JNI-28312141, a novel orally active colony-stimulating factor-1 receptor/FMS-related receptor tyrosine kinase-3 receptor tyrosine kinase inhibitor with potential utility in solid tumors, bone metastases, and acute myeloid leukemia. Mol Cancer Ther 8:3151–3161

    CAS  PubMed  Google Scholar 

  • Mantovani A, Sozzani S, Locati M (2002) Macrophage polarization: tumor associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    CAS  PubMed  Google Scholar 

  • Mazzieri R, Pucci F, Moi D et al (2008) Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 14:299–311

    PubMed  Google Scholar 

  • Metcalfe DD, Baram D, Mekori YA (1997) Mast cells. Physiol Rev 77:1033–1079

    CAS  PubMed  Google Scholar 

  • Molica S, Vacca A, Crivellato E et al (2003) Tryptase-positive mast cells predict clinical outcome of patients with B-cell chronic lymphocytic leukemia. Eur J Haematol 71:137–139

    PubMed  Google Scholar 

  • Moller A, Lippert U, Lessmann D et al (1993) Human mast cells produce IL-8. J Immunol 151:3261–3266

    CAS  PubMed  Google Scholar 

  • Movahedi K, Laoui D, Gysemans C et al (2010) Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 70:5728–5739

    CAS  PubMed  Google Scholar 

  • Nakao S, Kuwano T, Tsutsumi-Miyahara C et al (2005) Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1beta-induced neovascularization and tumor growth. J Clin Inves 115:2979–2991

    CAS  Google Scholar 

  • Nakayama T, Yao L, Tosato G (2004) Mast cell derived angiopoietin-1 plays a role in the growth of plasma cell tumors. J Clin Invest 114:1317–1325

    Google Scholar 

  • Naldini A, Carraro F (2005) Role of inflammatory mediators in angiogenesis. Curr Drug Targets Inflamm Allergy 4:3–8

    CAS  PubMed  Google Scholar 

  • Naldini A, Leali D, Pucci A et al (2006) Cutting edge: IL-1beta mediates the proangiogenic activity of osteopontin-activated human monocytes. J Immunol 177:4267–4270

    CAS  PubMed  Google Scholar 

  • Nico B, Mangieri D, Crivellato E et al (2008) Mast cells contribute to vasculogenic mimicry in multiple myeloma. Stem Cells Dev 17:19–22

    CAS  PubMed  Google Scholar 

  • Nishie A, Ono M, Shono T et al (1999) Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res 5:1107–1113

    CAS  PubMed  Google Scholar 

  • Nilsson G, Forsberg-Nilsson K, Xiang Z et al (1997) Human mast cells express functional TrkA and are a source of nerve growth factor. Eur J Immunol 27:2295–2301

    CAS  PubMed  Google Scholar 

  • Norrby K, Jakobsson A, Sörbo J (1986) Mast cell-mediated angiogenesis: a novel experimental model using the rat mesentery. Virchows Arch B Cell Pathol Mol Pathol 52:195–206

    CAS  Google Scholar 

  • Norrby K, Jakobsson A, Sörbo J (1989) Mast-cell secretion and angiogenesis, a quantitative study in rats and mice. Virchows Arch B Cell Pathol Mol Pathol 57:251–256

    CAS  Google Scholar 

  • Ohno S, Ohno Y, Suzuki N et al (2004) Correlation of histological localization of tumor-associated macrophages with clinicopathological features in endometrial cancer. Anticancer Res 24:3335–3342

    PubMed  Google Scholar 

  • Pittoni P, Tripodo C, Piconese S et al (2011) Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers. Cancer Res 71:5987–5997

    CAS  PubMed  Google Scholar 

  • Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7:803–815

    CAS  PubMed  Google Scholar 

  • Pucci F, Venneri MA, Biziato D et al (2009) A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood “resident” monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood 114:901–914

    CAS  PubMed  Google Scholar 

  • Qian BZ, Pollard JM (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    CAS  PubMed  Google Scholar 

  • Qu Z, Liebler JM, Powers MR et al (1995) Mast cells are a major source of basic fibroblast growth factor in chronic inflammation and cutaneous hemangioma. Am J Pathol 147:564–573

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qu Z, Huang X, Ahmadi P et al (1998a) Synthesis of basic fibroblast growth factor by murine mast cells. Regulation by transforming growth factor beta, tumor necrosis factor alpha, and stem cell factor. Int Arch Allergy Immunol 115:47–54

    CAS  PubMed  Google Scholar 

  • Qu Z, Kayton RJ, Ahmadi P et al (1998b) Ultrastructural immunolocalization of basic fibroblast growth factor in mast cells secretory granules. Morphological evidence for bfgf release through degranulation. J Histochem Cytochem 46:1119–1128

    CAS  PubMed  Google Scholar 

  • Reed JA, McNutt NS, Bogdany JK et al (1996) Expression of the mast cell growth factor interleukin-3 in the melanocytic lesions correlates with an increased number of mast cells in the perilesional stroma: implications for melanoma progression. J Cutan Pathol 23:495–505

    CAS  PubMed  Google Scholar 

  • Ribatti D, Roncali L, Nico B et al (1987) Effects of exogenous heparin on the vasculogenesis of the chorioallantoic membrane. Acta Anat 130:257–263

    CAS  PubMed  Google Scholar 

  • Ribatti D, Nico B, Vacca A et al (1998) Do mast cells help to induce angiogenesis in B-cell non-Hodgkin’s lymphomas? Br J Cancer 77:1900–1906

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ribatti D, Vacca A, Nico B et al (1999) Bone marrow angiogenesis and mast cell density increase simultaneously with progression of human multiple myeloma. Br J Cancer 79:451–455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ribatti D, Vacca A, Marzullo A et al (2000) Angiogenesis and mast cell density with tryptase activity increase simultaneously with pathological progression in B-cell non-Hodgkin’s lymphomas. Int J Cancer 85:171–175

    Google Scholar 

  • Ribatti D, Crivellato E, Candussio L et al (2001) Mast cells and their secretory granules are angiogenic in the chick embryo chorioallantoic membrane. Clin Exp Allergy 31:602–608

    CAS  PubMed  Google Scholar 

  • Ribatti D, Polimero G, Vacca A et al (2002) Correlation of bone marrow angiogenesis and mast cells with tryptase activity in myelodysplastic syndromes. Leukemia 16:1680–1684

    CAS  PubMed  Google Scholar 

  • Ribatti D, Vacca A, Ria R et al (2003a) Neovascularization, expression of basic fibroblast growth factor-2, and mast cells with tryptase activity increase simultaneously with pathological progression in human malignant melanoma. Eur J Cancer 39:666–675

    CAS  PubMed  Google Scholar 

  • Ribatti D, Molica S, Vacca A et al (2003b) Tryptase-positive mast cells correlate positively with bone marrow angiogenesis in B-cell chronic lymphocytic leukemia. Leukemia 17:1428–1430

    CAS  PubMed  Google Scholar 

  • Ribatti D, Vacca A, Ria R et al (2003c) Neovascularization, expression of fibroblast growth factor-2, and mast cells with tryptase activity increase simultaneously with pathological progression in human malignant melanoma. Eur J Cancer 39:666–674

    CAS  PubMed  Google Scholar 

  • Ribatti D, Finato N, Crivellato E et al (2005) Neovascularization and mast cells with tryptase activity increase simultaneously with pathological progression in human endometrial cancer. Am J Obstet Gynecol 193:1961–1965

    CAS  PubMed  Google Scholar 

  • Ribatti D, Nico B, Vacca A (2006) Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene 25:4257–4266

    CAS  PubMed  Google Scholar 

  • Ribatti D, Crivellato E (2009) The controversial role of mast cells in tumor growth. Int Rev Cell Mol Biol 275:89–131

    CAS  PubMed  Google Scholar 

  • Ribatti D, Crivellato E (2012) Mast cells, angiogenesis, and tumor growth. Biochim Biophys Acta Mol Basis Dis 1822:2–8

    CAS  Google Scholar 

  • Rojas IG, Spencer ML, Martinez A et al (2005) Characterization of mast cell subpopulations in lip cancer. J Oral Pathol Med 34:268–273

    CAS  PubMed  Google Scholar 

  • Romagnani P, Annunziato F, Lasagni L et al (2001) Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. J Clin Invest 107:53–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sawatsubashi M, Yamada T, Fukushima N et al (2000) Association of vascular endothelial growth factor and mast cells with angiogenesis in laryngeal squamous cell carcinoma. Virchows Arch B Cell Pathol Mol Pathol 436:243–248

    CAS  Google Scholar 

  • Scavelli C, Nico B, Cirulli T et al (2008) Vasculogenic mimicry by bone marrow macrophages in patient with multiple myeloma. Oncogene 27:663–674

    CAS  PubMed  Google Scholar 

  • Sica A, Schioppa T, Mantovani A et al (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential target sof anti-cancer therapy. Eur J Cancer 42:717–727

    CAS  PubMed  Google Scholar 

  • Sörbo J, Jakobbson A, Norrby K (1994) Mast cell histamine is angiogenic through receptors for histamine 1 and histamine 2. Int J Exp Pathol 75:43–50

    PubMed Central  PubMed  Google Scholar 

  • Soucek L, Lawlor ER, Soto D et al (2007) Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med 13:1211–1218

    CAS  PubMed  Google Scholar 

  • Starkey JR, Crowle PK, Taubenberger S (1988) Mast cell-deficient W/Wv mice exhibit a decreased rate of tumor angiogenesis. Int J Cancer 42:48–52

    CAS  PubMed  Google Scholar 

  • Stockmann C, Doedens A, Weidemann A et al (2008) Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 456:814–818

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takanami I, Takeuchi K, Naruke M (2000) Mast cell density is associated with angiogenesis and poor prognosis in pulmonary adenocarcinoma. Cancer 88:2686–2692

    CAS  PubMed  Google Scholar 

  • Talmadge JE, Donkor M, Scholar E (2007) Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Met Rev 26:373–400

    Google Scholar 

  • Theoharides TC, Conti P (2004) Mast cells: the Jekyll and Hyde of tumor growth. Trends Immunol 25:235–241

    CAS  PubMed  Google Scholar 

  • Tomita M, Matsuzaki Y, Onitsuka T (2000) Effect of mast cells on tumor angiogenesis in lung cancer. Ann Thorac Surg 69:1686–1689

    CAS  PubMed  Google Scholar 

  • Tóth-Jakatics R, Jimi S, Takebayashi S et al (2000) Cutaneous malignant melanoma: correlation between neovascularization and peritumoral accumulation of mast cells overexpressing vascular endothelial growth factor. Human Pathol 31:955–960

    Google Scholar 

  • Ullrich SE, Nghiem DX, Khaskina P (2007) Suppression of an established immune response by UVA-a critical role for mast cells. Photochem Photobiol 83:1095–1100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vacca A, Ribatti D (2006) Bone marrow angiogenesis in multiple myeloma. Leukemia 20:193–199

    CAS  PubMed  Google Scholar 

  • Vacca A, Ribatti D, Presta M et al (1999) Bone marrow neovascularization, plasma cell angiogenic potential and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 93:3064–3073

    CAS  PubMed  Google Scholar 

  • Vacca A, Semeraro F, Merchionne F et al (2003) Endothelial cells in the bone marrow of patients with multiple myeloma. Blood 102:3340–3348

    Google Scholar 

  • Walsh LJ, Trinchieri G, Waldorf HA et al (1991) Human dermal mast cells contain and release tumor necrosis factor alpha, which induces endothelial leukocyte adhesion molecule 1. Proc Natl Acad Sci USA 88:4220–4224

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wanachantatak S (2003) Increase of mast cells and tumor angiogenesis in oral squamous cell carcinoma. J Oral Pathol Med 23:195–199

    Google Scholar 

  • Zeisberger SM, Odermatt B, Marty C et al (2006) Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new high and highly effective antiangiogenic therapy approach. Br J Cancer 95:272–281

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under Grant agreement n°278570 to DR and 278706 to AV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Ribatti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this chapter

Cite this chapter

Ribatti, D., Vacca, A. (2014). The Role of Inflammatory Cells in Angiogenesis in Multiple Myeloma. In: Aggarwal, B., Sung, B., Gupta, S. (eds) Inflammation and Cancer. Advances in Experimental Medicine and Biology, vol 816. Springer, Basel. https://doi.org/10.1007/978-3-0348-0837-8_14

Download citation

Publish with us

Policies and ethics