Skip to main content

Fueter Mapping Theorem in Hypercomplex Analysis

  • Living reference work entry
  • First Online:
Operator Theory

Abstract

Fueter’s Theorem offers a method that conveys certain holomorphic functions in one complex variable to quaternionic regular (monogenic) functions. Ever since the theorem was proved in 1935, it underwent several main generalizations. Those are not only based on its own interest, but also motivated by applications found in other areas of mathematics, such as functional calculus of operators. This article serves as a survey on Fueter’s Theorem, its generalizations and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Axelsson, A., Kou, K.I., Qian, T.: Hilbert transforms and the Cauchy integral in Euclidean space. Stud. Math. 193(2), 161–187 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bell, S.: The Cauchy Transform, Potential Theory and Conformal Mappings (1992), Studies in Advanced Mathematics. CRC Press, Boca Raton

    Google Scholar 

  3. Colombo, F., Peña Peña, D., Sabadini, I., Sommen, F.: A new integral formula for the inverse Fueter mapping theorem. JMAA, 417(1), 112–122 (2013)

    Google Scholar 

  4. Colombo, F., Sabadini, I., Sommen, F.: The inverse Fueter mapping theorem. Commun. Pure Appl. Anal. 10(4), 1165–1181 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Colombo, F., Sabadini, I., Sommen, F.: The inverse Fueter mapping theorem in integral form using spherical monogenics. Isr. J. Math. 194, 485–505 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Colombo, F., Sabadini, I., Sommen, F.: The Fueter primitive of biaxially monogenic functions. Comm. Pure Appl. Anal. 13, 657–672 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cowling, M., Qian, T.: A class of singular integrals on the n-complex unit sphere. Sci. China (Ser. A) 42(12), 1233–1245 (1999)

    Google Scholar 

  8. Coifman, R., McIntosh, A., Meyer, Y.: L’intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes lipschitziennes. Ann. Math. 116, 361–387 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. David, G.: Opérateurs intégraux singuliers sur certains courbes du plan complexe. Ann. Sci. Ećole Norm. Sup. 17, 157–189 (1984)

    MATH  Google Scholar 

  10. David, G.: Wavelets and Singular Integrals on Curves and Surfaces. Lecture Notes in Mathematics, vol. 1465. Springer, Berlin/New York (1991)

    Google Scholar 

  11. De Bie, H., Peña Peña, D., Sommen, F.: The generating function of the Clifford-Gegenbauer polynomials. AIP Conf. Proc. 1479, 321–324 (2012)

    Article  Google Scholar 

  12. De Bie, H., Peña Peña, D., Sommen, F.: Generating functions of orthogonal polynomials in higher dimensions. http://arxiv.org/abs/1304.3493v1

  13. Delanghe, R., Sommen, F., Soucek, V.: Clifford Algebra and Spinor-Valued Functions, vol. 53. Kluwer Academic, Dorderecht/Boston/London (1992)

    Book  MATH  Google Scholar 

  14. Edwards, R.E., Gaudry, G.I.: Littlewood-Paley and Multiplier Theory. Springer, Berlin/Heidleberg/New York (1977)

    Book  Google Scholar 

  15. Fueter, R.: Die Funktionentheorie der Differentialgleichungen AM = 0 und AAit = 0 mit vier reellen Variablen. Comment. Math. Helv. 7, 307–330 (1935)

    Article  MathSciNet  Google Scholar 

  16. Gaudry, G., Long, R.-L., Qian, T.: A martingale proof of L2-boundedness of Clifford-valued singular integrals. Ann. Math. Pura Appl. 165, 369–394 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gaudry, G., Qian, T., Wang, S.-L.: Boundedness of singular integrals with holomorphic kernels on star-shaped closed Lipschitz curves. Colloq. Math. LXX,133–150 (1996)

    Google Scholar 

  18. Gilbert, J., Murray, M.: Clifford Algebra and Dirac Operator in Harmonic Analysis. Cambrage University Press, Cambridge (1991)

    Book  Google Scholar 

  19. Kou, K.-I., Qian, T., Sommen, F.: Generalizations of Fueter’s theorem. Methods Appl. Anal. 9(2), 273–290 (2002)

    MATH  MathSciNet  Google Scholar 

  20. Kou, K.-I., Qian, T., Sabadini, I.: The inversion theorem of Fueter’s theorem in \(\mathbf{R}_{1}^{n}\) for even n ’s (preprint)

    Google Scholar 

  21. Kenig, C.E.: Harmonic analysis techniques for second order elliptic boundary value problems. In: CBMS, Regional Conference Series in Mathematics, the American Mathematical Society, Baltimore vol. 83 (1991)

    Google Scholar 

  22. Li, C., McIntosh, A., Qian, T.: Clifford algebras, Fourier transforms, and singular convolution operators on Lipschitz surfaces. Rev. Mat. Iberoamericana 10, 665–721 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. Li, C., McIntosh, A., Semmes, S.: Convolution singular integrals on Lipschitz surfaces. J. Am. Math. Soc. 5, 455–481 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. McIntosh, A., Qian, T.: Convolution singular integral operators on Lipschitz curves. In: Proc. of the Special Year on Harmonic Analysis at Nankai Inst. of Math., Tianjin. Lecture Notes in Mathematics, vol. 1494, pp. 142–162

    Google Scholar 

  25. McIntosh, A., Qian, T.: Lp Fourier multipliers on Lipschitz curves. Trans. Am. Math. Soc. 333, 157–176 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Peetre, J., Qian, T.: Möbius covariance of iterated Dirac operators. J. Aust. Math. Soc. Ser. A 56, 665–721 (1994)

    Article  MathSciNet  Google Scholar 

  27. Peña Peña, D., Qian, T., Sommen, F.: An alternative proof of Fueter’s theorem. Compl. Var. Elliptic Equ. 51(8–11), 913–922 (2006)

    Article  MATH  Google Scholar 

  28. Peña Peña, D., Sommen, F.: A generalization of Fueters theorem. Results Math. 49(3–4), 301–311 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Peña Peña, D., Sommen, F.: A note on the Fueter theorem. Adv. Appl. Cliff. Alg. 20(2), 379–391 (2010)

    Article  MATH  Google Scholar 

  30. Peña Peña, D., Sommen, F.: Fueter’s theorem: the saga continues. J. Math. Anal. Appl. 365(1), 29–35 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Peña Peña, D., Sommen, F.: Monogenic Gaussian distribution in closed form and the Gaussian fundamental solution. Compl. Var. Elliptic Equ. 54(5), 429–440 (2009)

    Article  MATH  Google Scholar 

  32. Qian, T.: A holomorphic extension result. Compl. Var. 32(1), 59–77 (1997)

    Article  Google Scholar 

  33. Qian, T.: Singular integrals with holomorphic kernels and Fourier multipliers on star-shape Lipschitz curves. Stud. Math. 123(3), 195–216 (1997)

    MATH  Google Scholar 

  34. Qian, T.: Generalization of Fueter’s result to Rn +1. Rend. Mat. Acc. Lincei 8(9), 111–117 (1997)

    MATH  Google Scholar 

  35. Qian, T.: Singular integrals on star-shaped Lipschitz surfaces in the quaternionic space. Math. Ann. 310, 601–630 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  36. Qian, T.: Fourier analysis on starlike Lipschitz surfaces. J. Funct. Anal. 183, 370–412 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  37. Qian, T., Ji, X.H., Ryan, J.: Fourier theory under Möbius transformations. In: Ryan, J., Sprossig, W. (eds.) Clifford Algebras and their Applications in Mathematical Physics, vol. 2, pp. 51–80. Birkhäuser, Boston/Basel/Berlin (2000)

    Google Scholar 

  38. Qian, T., Ryan, J.: Conformal transformations and hardy spaces arising in Clifford analysis. J. Oper. Theory 35, 349–372 (1996)

    MATH  MathSciNet  Google Scholar 

  39. Qian, T., Sommen, F.: Deriving harmonic functions in higher dimensional spaces. Zeitschrift Analysis and ihre Anwendungen (Math. Methods Appl. Sci.) 22(2), 275–288 (2003)

    Google Scholar 

  40. Qian, T., Yang, Y.: Hilbert transforms on the sphere with the Clifford algebra setting. J. Fourier Anal. Appl. 15, 753–774 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  41. Rinehard, R.F.: Elements of a theory of intrinsic functions on algebras. Duke Math. J. 32, 1–19 (1965)

    Article  MathSciNet  Google Scholar 

  42. Semmes, S.: A criterion for the boundedness of singular integrals on hypersurfaces. Trans. Am. Math. Soc. 311, 501–513 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  43. Semmes, S.: Analysis vs. geometry on a class of rectifiable hypersurfaces in Rn. Indiana Univ. Math. J. 39, 1005–1035 (1990)

    MATH  MathSciNet  Google Scholar 

  44. Semmes, S.: Chord-arc surfaces with small constant, l *. Adv. Math. 85, 198–223 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  45. Sommen, F.: On a generalization of Fueter’s theorem. Zeitschrift für Analysis und ihre Anwendungen. (J. Anal. Appl.) 19(4), 899–902 (2000)

    Google Scholar 

  46. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  47. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis in Euclidean Spaces. Princeton University Press, Princeton (1971)

    Google Scholar 

  48. Sudbery, A.: Quaternionic analysis. Math. Proc. Camb. Phil. Soc. 85, 199–225 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  49. Verchota, G.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation. J. Funct. Anal. 59, 572–611 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author wishes to sincerely thank I. Sabadini, F. Colombo, and D. Peña Peña for helpful information and remarks on the subject which greatly contribute to the writing out of this essay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this entry

Cite this entry

Qian, T. (2014). Fueter Mapping Theorem in Hypercomplex Analysis. In: Alpay, D. (eds) Operator Theory. Springer, Basel. https://doi.org/10.1007/978-3-0348-0692-3_28-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0692-3_28-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Basel

  • Online ISBN: 978-3-0348-0692-3

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics